Preview

Fine Chemical Technologies

Advanced search

CATALYSTS FOR ANODE OXIDATION OF FORMIC ACID ON CARBON NANOTUBES "TAUNIT"

https://doi.org/10.32362/2410-6593-2016-11-5-51-56

Abstract

Platinum-palladium/carbon nanjtubes (CNT) carbon nanocomposites were synthesized by chemical reduction of ions in water-organic solutions of reverse microemulsions. Physico-chemical characteristics of the nanocomposites were studied by atomic force microscopy, transmission electron microscopy, photon-correlation spectroscopy, X-ray phase analysis and chronopotentiometry. It was found that the smallest platinum-palladium nanoparticles size is observed when the metal ratio is 3:1 and the water pool size is minimal (ω = 1.5). Testing of catalytic activity in the oxidation of formic acid showed that the platinum-palladium/CNT nanocomposites showed higher corrosion resistance than nanocomposites with pure palladium.

About the Authors

N. A. Yashtulov
Moscow Technological University (Institute of Fine Chemical Technologies)
Russian Federation
Moscow, 119571 Russia


M. V. Lebedeva
Moscow Technological University (Institute of Fine Chemical Technologies)
Russian Federation
Moscow, 119571 Russia


S. M. Pestov
Moscow Technological University (Institute of Fine Chemical Technologies)
Russian Federation
Moscow, 119571 Russia


References

1. Stolten D., Emonts B. Fuel Cell Science and Engineering: Materials, Processes, Systems and Technology. Wiley-VCH Verlag GmbH & Co KGaA, 2012. V. 1-2. 1268 p.

2. Gandia L.M., Arzamedi G. Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety. Elsevier, 2013. 472 p.

3. Ghenciu A.F. // Current Opinion in Solid State and Materials Science. 2002. V. 6. № 5. P. 389–399.

4. Rabis A., Paramaconi R., Schmidt T.J. // ACS Catal. 2012. V. 2. № 5. Р. 864–890.

5. Tiwari J.N., Tiwari R.N., Singh G., Kim K.S. // Nano Energy. 2013. V. 2. P. 553–578.

6. Tarasevich M.R., Kuzov A.V. // Alternative Energy and Ecology. 2010. V. 87. № 7. P. 86–108.

7. Waszczuk P., Barnard T., Rice C., Masel R., Wieckowscki A. // Electrochem. Commun. 2002. V. 4. № 7. P. 599–603.

8. Winjobi O., Zhang Z., Liang C., Li W. // Electrochim. Acta. 2010. V. 55. № 13. P. 4217–4221.

9. Hong P., Luo F., Liao S., Zeng J. // Int. J. Hydr. Energy. 2011. V. 36. № 14. P. 8518–8524.

10. Yashtulov N.A., Flid V.R. // Russian Chemical Bulletin. 2013. Vol. 62. № 6. P. 1332–1337.

11. Lebedeva M.V., Yashtulov N.A., Minina N.E., Belyaev B.A. // Vestnik MITHT (Fine Chem. Tech.) 2014. V. 9. № 3. P. 74–78.

12. Wang J., Yin G., Chen Y., Li R., Sun X. // Int. J. Hydrogen Energy. 2009. V. 34. № 19. P. 8270–8275.

13. Liu B., Li H.Y., Die L., Zhang X.H., Fan Z., Chen J.H. // J. Power Sources. 2009. V. 186. № 1. P. 62–66.

14. Zhang H.X., Wang C., Wang J.Y., Zhai J.J., Cai W.B. // J. Phys Chem C. 2010. V. 114. № 14. P. 6446–6451.

15. Yashtulov N.A., Zenchenko V.O., Lebedeva M.V., Samojlov V.M., Karimov O.Kh., Flid V.R. // Russian Chemical Bulletin. 2016. V. 65. № 1. P. 133–138.

16. Nevidimov A.V., Razumov V.F. // Molecular Physics. 2009. V. 107. № 20. P. 2169–2180.

17. 17 Egorova E.M., Revina A.A. // Colloid Journal. 2002. V. 64. № 3. P. 334–345.

18. Tcybulya S.V., Cherepanova S.V. Vvedenie v strukturnyj analiz nanokristallov (Introduction to the structural analysis of nanocrystals). Novosibirsk: NGU, 2008. 92 p.


Review

For citations:


Yashtulov N.A., Lebedeva M.V., Pestov S.M. CATALYSTS FOR ANODE OXIDATION OF FORMIC ACID ON CARBON NANOTUBES "TAUNIT". Fine Chemical Technologies. 2016;11(5):51-56. https://doi.org/10.32362/2410-6593-2016-11-5-51-56

Views: 423


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)