Preview

Fine Chemical Technologies

Advanced search

The role of the interfacial layer in time -temperat ure dependence of the electrical resistance of hi gh-density polyethylene /carbon black composites

https://doi.org/10.32362/2410-6593-2016-11-3-17-30

Full Text:

Abstract

In order to explain the time-temperature dependence of the electrical resistance of HDPE filled with carbon black, a model is proposed, in which an important role is played by the interfacial layer between the solid-phase filler and the polymer matrix. It is shown that the change in the structure of the macromolecules in the interfacial layer can be characterized using fractal concepts. The fractal dimension increases as the size of the filler particles decreases, and this is accompanied by a decrease in electrical resistance. During isothermal annealing treatment of the samples the fractal dimension of the interfacial layer is changed from 2.3 to 3. Correlations of the observed parameters are presented. The activation energy of increasing resistance in the initial period of the sample treatments is calculated. It is shown that the electrostatic field restrains the increase of the fractal dimension of the interfacial layer and the change in the resistance of the filled systems.

About the Author

N. N. Komova
Московский технологический университет (Институт тонких химических технологий)
Russian Federation
Moscow, 119571 Russia


References

1. Bigg D.M. Electrical properties of metal-filled polymer composites // Metal-Filled Polymers: Properties and Applications / Ed. S.K. Bhattacharya. New York: Marcel Dekker, 1986. Р. 165–226.

2. Delmonte J. Metal/Polymer Composites. New York: Van Nostrand Reinhold, 1990. 245 p.

3. Donnet, J. B., Bansaland, R.C., Wang, M.J. Carbon Black: Science and Technology. New York: Marcel Dekker, 1993. 284 p.

4. Wypych G. Handbook of Fillers: 2nd Edition Chem. New York: Tec., 2000. 693 p.

5. Stauffer D., Aharony A. Introduction to Percolation Theory. New York: Taylor & Francis, 1991. 195 p.

6. Zallen R. The Physics of Amorphous Solids. New York: Wiley, 1983. 307 p.

7. Grosberg A.Yu., Khokhlov A.R. Statisticheskaya fizika makromolekul (Statistical physics of macromolecules). M.: Nauka, 1989. 341 p.

8. De Gennes P. Scaling concepts in polymer physics. Ithaca and London: Cornell University Press, 1979. 331 p.

9. Komova N. N., Syrov Yu. V., Grigor'ev M.A. // Vestnik MITHT (Fine Chem. Tech.). 2006. № 5.V. 1. P. 58–62.

10. Sommers. D. J. // Polym. Plast. Technol. Eng.1984. V. 23(1). P. 83–98.

11. Karpov S.V., Gerasimov V.S., Isaev I.L., Obushchenko A.V. // Colloid Journal. 2006. V. 68. № 4. P. 484–494.

12. Zhang W., Dehghani-Sanij A.A., Blackburn R.S. // J. Mater. Sci. 2007. V. 42. P. 3408–3418.

13. Traina M., Pegoretti A., Penati A. // J. Applied Polymer Science. 2007. V. 106. P. 2065–2074.

14. Komova N.N., Shibryaeva L.S. // Abstr. XX Int. conf. on chemical thermodynamics in Russia (RCCT2015). Nizhhni Novgorod. 22-26 June 2015. Nizhhni Novgorod, 2015. P. 256.

15. Markov V.A., Kandyrin L.B., Markov A.V., Gorodnickij M.S. // Mekhanika kompozitsionnykh materialov i konstruktsii. 2013. № 3. P. 35–40.

16. Komova N. N., Zaikov G. E. Model Representations of the Effect of Temperature on Resistance Polypropylene Filled with Carbon Black // Physical Chemistry Research for Engineering and Applied Sciences. 2014. V. 3: High Performance Materials and Methods. Apple Academic Press, Inc. 145 p.

17. Zhang J. F., Zheng Q., Yang Y.Q., Yi X. S. // J. Appl. Polym. Sci. 2002. V. 83. P. 3112–3118.

18. Komova N.N., Kapitonov V.M., Barashkova I.I., Markov V.A. // Materialy Х Mezhdunar. nauchno-prakt. konf. «Dni nauki 2014» [Materials of X Intern. nauchno-prakt. Conf. "The days of science 2014"]. Praga. 2014. P. 51–57.

19. Lipatov Yu.S. Polymer Reinforcement. Toronto: Chem. Tech. Publishers, 1995. 278 p.

20. Ahmed S., Jones F.R. // Composites. 1988. V. 19. № 2. P. 277–282.

21. Barashkova I.I., Komova N.N., Motyakin M.V., Potapov E.Eh., Vasserman A.M. // Doklady Akademii Nauk. 2014. V. 456. № 4. P. 437–440.

22. Adamson A.W., Gast A.P. Physical Chemistry of Surfaces. New York: Wiley Interscience, 1997. 784 p.

23. Zelenyj L.M., Milovanov A.B. // Physics-Uspekhi. 2004. V. 174. № 8. P. 809–852.

24. Kuzeev I.R., Samigullin G.Kh., Kulikov D.V., Zakirnichnaya M.M. Slozhnye sistemy v prirode i tekhnike (Complex systems in nature and technology). Ufa: Izd-vo UGNTU, 1997. 225 p.

25. Kozlov G.V., Burya A.I., Aloev V.Z., Yanovskij Yu.G. // Fizicheskaya mezomekhanika (Physical mesomechanics). 2005. V. 8. № 2. P. 35–38.

26. Yakubov T.S. // Doklady Akademii Nauk SSSR. 1988. V. 303. № 2. P. 425–428.

27. Huang J.C. // Adv. Polym. Technol. 2002. V. 21. P. 299–306.

28. Janzen J. // J. Appl. Phys. 1975. V. 46. P. 966–974.

29. Traina M., Pegoretti A., Penati A. // Book of abstracts. 1st Int. Symposium Nanostructured and Functional Polymer-Based Materials and Composites. Dresden. Germany. 24-27 Aprile 2005. Dresden. P. 25–28.

30. Traina M., Pegoretti A., Penati A.// Book of abstracts. 27th National Convention of the Italian Association of the Science and Technology of Macromolecules. Naples. Italy. 2005. P. 101–108.

31. Komova N.N. // Sbornik trudov Vserossijskoj nauchnoj konferencii «Matematika, informatika, estestvoznanie v ehkonomike i obshchestve» [Proceedings of all-Russian scientific conference "Mathematics, Informatics, natural Sciences in the economy and society"] (MIESEKO–2015). Moscow. January 30, 2015. M.: MFUA, 2015. T. 1. S. 110–115.

32. Komova N.N., Zaikov G.E. // Vestnik Kazanskogo Tekhnologicheskogo Universiteta. 2015. V. 18. № 11. P. 8–14.

33. Heaney M. B. // Appl. Phys. Lett. 1996. V. 69. P. 2602–2604.

34. Tawalbeh T.M., Saq’an S., Yasin S.F., Zihlif A.M., Ragosta G. // J. Mater. Sci.: Materials In Electronics. 2005. V. 16. P. 351–354.

35. Mott N.F., Davis E.A. Electronic Process in Non-Crystalline Materials. Oxford: Glarendon Press, 1971. 438 p.

36. Di W., Zhang G. // J. Mater. Sci. 2004. V. 39. Р. 695–697.

37. Tang H., Chen X., Tang A., Luo Y. // J. Appl. Polym. Sci. 1996. V. 59. P. 383–387.

38. Dafu W., Tiejun Z., Yi X.-S. // J. Appl. Polym. Sci. 2000. V. 77. P. 53–58.

39. Azulay D., Eylon M., Eshkenazi O., Toker D., Balberg M., Shimoni N., Millo O., Balberg I. // Phys. Rev.Lett. 2003. V. 90. P. 1–4.

40. Huang J.C. // Adv. Polym. Technol. 2002. V. 21. P. 299–304.

41. Foulger S.H. // J. Appl. Polym. Sci. 1999. V. 72. P. 1573–1579.

42. Hindermann-Bischoff M., Ehrburger-Dolle F. // Carbon. 2001. № 39. P. 375–382.

43. Hou Y.H., Zhang M. Q., Rong M.Z., Yu G., Zeng H.M. // J. Appl. Polym. Sci. 2002. V. 84. P. 2768–2772.

44. Huang S.J., Lee J.K., Ha C.S. // Colloid. Polym. Sci. 2004. V. 282. P. 575–586.

45. Park J.S., Kang P.H., Nho Y.C., Suh D.H. // J. Appl. Polym. Sci. 2003. V. 89. P. 2316–2322.

46. Tang H., Chen X., Luo Y. // Eur. Polym. J. 1996. V. 32. P. 963–971.

47. Tang H., Chen X., Luo Y. // Eur. Polym. J. 1997. V. 33. P. 1383–1395.

48. Zhang C., Wang P., Ma C.A., Wu G., Sumita M. // Polymer. 2006. V. 47. P. 466–478.

49. Zhang J.F., Zheng Q., Yang Y.Q., Yi X.S. // J. Appl. Polym. Sci. 2002. V. 83. P. 3112–3120.

50. Dai K., Zhang Y.-C., Tang J.-H., Ji X., Li Z.-M.// J. Appl. Polym. Sci. 2012. V. 125. P. 561–570.

51. Kirkpatrick S. // Rev. Mod. Phys. 1973. V. 45. P. 574–578.

52. Malamatov A.Kh., Kozlov G.V., Mikitaev M.A. Mekhanizmy uprochneniya polimernykh nanokompozitov (Mechanisms of hardening of polymeric nanocomposites). M.: Izd-vo MUCTR, 2006. 240 p.

53. Pfeifer P., Avnir D.J. // Chem. Phys. 1983. V. 79. P. 3558–3560.

54. Bobryshev A.N., Kozomazov V.N., Babin L.O., Solomatov V.I. Sinergetika kompozicionnykh materialov (Synergy composites). Lipeck: NPO ORIUS, 1994. 154 p.

55. Hentschel H.G.E., Deutch J.M. // Phys. Rev.1984. V. 29 A. № 12. Р. 1609–1611.

56. Kozlov G.V., Zaikov G.E. Structure of the Polymer Amorphous State. Utrecht – Boston: Brill Academic Publishers, 2004. 465 р.

57. Ehnciklopediya polimerov: in 3-d Vol. M.: Sovetskaya ehnciklopediya, 1977. V. 3.1150 p.

58. Kozlov G.V. // Physics-Uspekhi. 2015. V. 185. № 1. P. 35–64.

59. Van Damme H., Levitz P., Bergaya F., Alсover J.F., Gatineau L., Fripiat J.J. // J. Chem. Phys. 1986. V. 85. № 1. P. 616–625.

60. Mamonya Ye.P. // J. Micromole. Sci. Phys. 1999. V. 38. P. 615–622.

61. Kozlov G.V., Lipatov Yu.S. // Composite Interfaces. 2002. V. 9. № 6. P. 509–527.

62. Novikov V.U., Kozlov G.V. // Mekhanika kompozitsionnykh materialov i konstruktsi. 1999. № 35. P. 269–290.

63. Blajt Eh.R, Blur D. Ehlektricheskie svojstva polimerov (Electrical properties of polymers). M.: Fizmatlit, 2008. 373 p. (Blythe A.R., Bloor D. Electrical Properties of Polymers. Cambridge University Press, 2005. 487 p.)

64. Mai Y.W., Yu Z.Z. Polymer nanocomposites. Cambridge: Wood head Publishing Ltd., 2006. 594 p.

65. Frenkel' Ya.I. Kineticheskaya teoriya zhidkostej (Kinetic theory of liquids). M.: Nauka, 1975. 592 p.

66. Slucker A.I., Mikhajlin A.I., Slucker I.A. // Physics-Uspekhi. 1994. V. 164. № 4. P. 357–366.

67. Bartenev G.M., Barteneva A.G. Relaksacionnye svojstva polimerov (Relaxation properties of polymers). M.: Khimiya, 1992. 384 p.


For citation:


Komova N.N. The role of the interfacial layer in time -temperat ure dependence of the electrical resistance of hi gh-density polyethylene /carbon black composites. Fine Chemical Technologies. 2016;11(3):17-30. https://doi.org/10.32362/2410-6593-2016-11-3-17-30

Views: 185


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)