Synthesis of methanol from gaseous products of pyrolysis of sewage sludge
https://doi.org/10.32362/2410-6593-2025-20-6-540-554
EDN: NAQGZO
Abstract
Objectives. To study the influence of compositional variability (different ash and organic matter contents) of sewage sludge on the characteristics of synthesis gas (syngas) and to determine the yield of products in the entire chain of conversion of sewage sludge to methanol through the stage of syngas production by two-stage pyrolysis.
Methods. Syngas was produced by a two-stage pyrolysis method. After heating sewage sludge from 20 to 1000°C in an oxygen-free medium, heterogeneous thermal cracking of the volatile products was carried out in a biochar medium at 1000°C. The syngas was converted to methanol on a CuZnAl catalyst in an isothermal flow heat-pipe reactor at a feedstock feed rate of 600 h−1, an internal reactor pressure of 5 MPa, and temperatures in the catalyst bed of 205, 215, and 225°C. The resultant syngas having a CO2 content of less than 0.5 vol % and a H 2/CO ratio of 1.8 was used as feedstock for methanol production.
Results. The experimental studies of syngas production from sewage sludge demonstrated the active formation of syngas during twostage pyrolysis in the temperature range of 140–600°C regardless of the ash content of the sludge. The H2/CO ratio in the syngas produced by two-stage pyrolysis of sewage sludge was shown to depend on the H/O atomic ratio in the sludge composition. Crude methanol was obtained at maximum yield and purity at a temperature of 225°C in the catalyst bed. The overall conversion of carbon monoxide was 43.6%.
Conclusions. Variability in the composition of sewage sludge significantly influences quantitative parameters to a large extent in terms of the specific volume yield of syngas and insignificantly terms of its composition. No qualitative influence was exerted by the difference in the types of sewage sludge on syngas production. The experimental studies showed that 1 kg of sewage sludge with a relative moisture content up to 5 wt % can produce 1.1 nm3 of syngas and a further 220 g of pure methanol.
Keywords
About the Authors
O. M. LarinaRussian Federation
Olga M. Larina, Cand. Sci. (Eng.), Senior Researcher
Scopus Author ID 57190050879, ResearсherID D-3336-2014
13-2, Izhorskaya ul., Moscow, 125412
Competing Interests:
The authors declare no conflicts of interest
I. I. Lishchiner
Russian Federation
Iosif Iz. Lishchiner, Cand. Sci. (Chem.), Senior Researcher
Scopus Author ID 6507439331, ResearсherID J-7291-2018
13-2, Izhorskaya ul., Moscow, 125412
Competing Interests:
The authors declare no conflicts of interest
O. V. Malova
Russian Federation
Olga V. Malova, Cand. Sci. (Chem.), Senior Researcher
Scopus Author ID 57190617511, ResearсherID J-7261-2018
13-2, Izhorskaya ul., Moscow, 125412
Competing Interests:
The authors declare no conflicts of interest
Yu. M. Faleeva
Russian Federation
Yulia M. Faleeva, Researcher
ResearсherID AAY-2189-2021
13-2, Izhorskaya ul., Moscow, 125412
Competing Interests:
The authors declare no conflicts of interest
References
1. Pachauri R.K., Meyer L.A. (Eds.). IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva; 2015, 151 p. ISBN 978-92-9169-143-2
2. Filonchyk M., Peterson M.P., Zhang L., Hurynovich V., He Y. Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O. Sci. Total Environ. 2024;935:173359. https://doi.org/10.1016/j.scitotenv.2024.173359
3. Braide D., Panaritis C., Patience G., Boffito D.C. Gas to liquids (GTL) microrefinery technologies: A review and perspective on socio-economic implications. Fuel. 2024;375:132385. https://doi.org/10.1016/j.fuel.2024.132385
4. Kjärstad J., Johnsson F. The role of biomass to replace fossil fuels in a regional energy system: The case of West Sweden. Thermal Science. 2016;20(4):1023–1036. https://doi.org/10.2298/TSCI151216113K
5. Yana S., Nizar Irhamni M., Mulyati D. Biomass waste as a renewable energy in developing bio-based economies in Indonesia: A review. Renewable Sustainable Energy Rev. 2022;160:112268. https://doi.org/10.1016/j.rser.2022.112268
6. Bazarov B.I., Odilov O.Z., Otabaev N.I. Production of synthetic hydrocarbons from natural gas using GTL technology. Mekhanika i tekhnologii = Mechanics and Technologies. 2022;6:122–132 (in Russ.).
7. Mirgayazov I.I., Abdullin A.I. Modern methods of producing synthesis gas and the Fischer-Tropsch process. Vestnik Kazanskogo tekhnologicheskogo universiteta = Herald of Kazan Technological University. 2014;9:258–261 (in Russ.).
8. Batenin V.M., Zaichenko V.M., Kosov V.F., et al. Pyrolytic conversion of biomass to gaseous fuel. Dokl. Chem. 2012;446(1): 196–199. https://doi.org/10.1134/S0012500812090030 [Original Russian Text: Batenin V.M., Zaichenko V.M., Kosov V.F., Sinel’shchikov V.A. Pyrolytic conversion of biomass to gaseous fuel. Doklady Akademii nauk. 2012;446(2):179–182 (in Russ.). https://elibrary.ru/pbwfrt ]
9. Kosov V., Kosov V., Sinelschikov V., Zaichenko V. HighCalorific Gas Mixtures Produced from Biomass. In: Oral A., Bahsi Z., Oze M. (Eds.). International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013). Springer Proceedings in Physics. Cham: Springer; 2014. V. 155. P. 377–383. https://doi.org/10.1007/978-3-319-05521-3_48
10. Kachalov V.V., Lavrenov V.A., Lishchiner I.I., Malova O.V., Tarasov A.L., Zaichenko V.M. Scientific bases of biomass processing into basic component of aviation fuel. J. Phys.: Conf. Ser. 2016;774:012136. https://doi.org/10.1088/1742-6596/774/1/012136
11. Valiev V.S., Ivanov D.V., Shagidullin R.R. Methods for urban wastewater sludge disposal (Review). Rossiiskii zhurnal prikladnoi ehkologii = Russian Journal of Applied Ecology. 2020;4:52–63 (in Russ.). https://doi.org/10.24411/2411-7374-2020-10034
12. Kominko H., Gorazda K., Wzorek Z. Effect of sewage sludge-based fertilizers on biomass growth and heavy metal accumulation in plants. J. Environ. Manage. 2022;305:114417. https://doi.org/10.1016/j.jenvman.2021.114417
13. Chang H., Yuan J., Zhao Y., Bisinella V., Damgaard A., Christensen T.H. Carbon footprints of incineration, pyrolysis, and gasification for sewage sludge treatment. Resour., Conserv. Recycl. 2025;212:107939. https://doi.org/10.1016/j.resconrec.2024.107939
14. Kelessidis A., Stasinakis A.S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manage. 2012;32(6):1186–1195. https://doi.org/10.1016/j.wasman.2012.01.012
15. Syed-Hassan S.S.A., Wang Y., Hu S., Su S., Xiang J. Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations. Renewable Sustainable Energy Rev. 2017;80:888–913. https://doi.org/10.1016/j.rser.2017.05.262
16. Faleeva Y.M., Zaichenko V.M. Two-stage pyrolytic conversion of coffee husk and parchment into synthesis gas. J. Phys.: Conf. Ser. 2020;1683(5):052017. https://doi.org/10.1088/1742-6596/1683/5/052017
17. Zagashvili Yu.V., Kuz’min A.M., Imshenetskii V.V., Lishchiner I.I., Malova O.V. Experimental studies of methanol synthesis from nitrogen-ballasted synthesis gas. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov = Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2021;332(7):140–147 (in Russ.). https://doi.org/10.18799/24131830/2021/7/3272
18. Xu C., Hu S., Xiang J., Zhang L., Sun L., Shuai C., Chen Q., He L., Edreis E.M.A. Interaction and kinetic analysis for coal and biomass co-gasification by TG–FTIR. Bioresour. Technol. 2014;154:313–321. https://doi.org/10.1016/j.biortech.2013.11.101
19. He Q., Wan K., Hoadley A., Yeasmin H., Miao Z. TG–GC–MS study of volatile products from Shengli lignite pyrolysis. Fuel. 2015;156:121–128. https://doi.org/10.1016/j.fuel.2015.04.043
20. Caballero J.A., Front R., Marcilla A., Conesa J.A. Characterization of sewage sludges by primary and secondary pyrolysis. J. Anal. Appl. Pyrolysis. 1997;40-41:433–450. https://doi.org/10.1016/S0165-2370(97)00045-4
21. Nowicki L., Ledakowicz St. Comprehensive characterization of thermal decomposition of sewagesludge by TG–MS. J. Anal. Appl. Pyrolysis. 2014;110:220–228. https://doi.org/10.1016/j.jaap.2014.09.004
22. Alvarez J., Lopez G., Amutio M., Artetxe M., Barbarias I., Arregi A., Bilbao J., Olazar M. Characterization of the biooil obtained by fast pyrolysis of sewage sludge in a conical spouted bed reactor. Fuel Process. Technol. 2016;149: 169–175. https://doi.org/10.1016/j.fuproc.2016.04.015
23. Chen W.-Hs., Wang Ch.-W., Ong Hw.Ch., Show P.L., Hsieh Tz.-Hs. Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin. Fuel. 2019;258:116168. https://doi.org/10.1016/j.fuel.2019.116168
24. Oh D.Yo., Kim D., Choi H., Park K.Yo. Syngas generation from different types of sewage sludge using microwave-assisted pyrolysis with silicon carbide as the absorbent. Heliyon. 2023;9(3):e14165. https://doi.org/10.1016/j.heliyon.2023.e14165
25. Quan C., Gao N., Song Q. Pyrolysis of biomass components in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and product characterization. J. Anal. Appl. Pyrol. 2016;121:84–92. https://doi.org/10.1016/j.jaap.2016.07.005
26. Liang W., Feng Yu., Wang K., Wang C., Yang H. Investigation on pyrolysis characteristics and kinetics of sewage sludge with different heat-mass transfer rates. Fuel. 2024;372:132192. https://doi.org/10.1016/j.fuel.2024.132192
27. Florin N.H., Maddocks A.R., Wood S., Harris A.T. Hightemperature thermal destruction of poultry derived wastes for energy recovery in Australia. Waste Manage. 2009;29(4): 1399–1408. https://doi.org/10.1016/j.wasman.2008.10.002
28. Gerasimov G.Y., Khaskhachikh V.V., Sychev G.A., et al. Migration Activity of Heavy Metals During Pyrolysis of Dried Sewage Sludge in a Fixed-Bed Reactor. J. Eng. Phys. Thermophy. 2023;96:112–119. https://doi.org/10.1007/s10891-023-02667-3 [Original Russian Text: Gerasimov G.Ya., Khaskhachikh V.V., Sychev G.A., Zaichenko V.M. Migration Activity of Heavy Metals During Pyrolysis of Dried Sewage Sludge in a FixedBed Reactor. Inzhenerno-fizicheskii zhurnal. 2023;96(1): 114–122 (in Russ.). https://elibrary.ru/uzglct ]
29. Larina O.M., Pudova Ya.D. Chicken Litter Pyrolysis and Composition of Gaseous Products Formed. Solid Fuel Chem. 2024;58(6):441–451. https://doi.org/10.3103/S0361521924700344
30. Kosov V.F., Lavrenov V.A., Larina O.M., Zaichenko V.M. Use of Two-stage Pyrolysis for Bio-waste Recycling. Chem. Eng. Transact. 2016;50:151–156. https://doi.org/10.3303/CET1650026
31. Batenin V.M., Bessmertnykh A.V., Zaichenko V.M., et al. Thermal methods of reprocessing wood and peat for power engineering purposes. Therm. Eng. 2010;57(11):946–952. https://doi.org/10.1134/S0040601510110066 [Original Russian Text: Batenin V.M., Bessmertnykh A.V., Zaichenko V.M., Kosov V.F., Sinel’shchikov V.A. Thermal methods of reprocessing wood and peat for power engineering purposes. Teploehnergetika. 2010;11:36–42 (in Russ.). https://elibrary.ru/nbkpbt ]
32. Zaichenko V.M., Lavrenov V.A., Sinelshchikov V.A., et al. Comparative Analysis of the Processing of Various Types of Biomass into Synthesis Gas by Two-Stage Pyrolytic Conversion. Solid Fuel Chem. 2022;56(6):448–455. https://doi.org/10.3103/s0361521922060118 [Original Russian Text: Zaichenko V.M., Lavrenov V.A., Sinelshchikov V.A., Faleeva Yu.M. Comparative Analysis of the Processing of Various Types of Biomass into Synthesis Gas by Two-Stage Pyrolytic Conversion. Khimiya tverdogo topliva. 2022;6:42–50 (in Russ.). https://doi.org/10.31857/S0023117722060111 ]
33. Larina O.M., Zaichenko V.M. Thermal cracking in charcoal and ceramics of pyrolysis liquid from sewage sludge. J. Phys.: Conf. Ser. 2018;94:012034. https://doi.org/10.1088/1742-6596/946/1/012034
34. Liu G., Hagelin-Weaver H., Welt B. A Concise Review of Catalytic Synthesis of Methanol from Synthesis Gas. Waste. 2023;1(1):228–248. https://doi.org/10.3390/waste1010015
35. Lishchiner I.I., Malova O.V., Tarasov A.L., Maslennikov V.M., Vyskubenko Yu.A., Tolchinskii L.S., Dolinskii Yu.L. Methanol producing from synthesis gas ballasted by nitrogen. Kataliz v promyshlennosti. 2010;4:50–55 (in Russ.).
36. Kanan S.M., Mohamed Ahm.A., Shabnam A., Habiba Sh. Methanol Production from Bio-syngas. Comprehensive Methanol Science. 2025;2:711–724. https://doi.org/10.1016/B978-0-443-15740-0.00008-2
37. Timsina R., Thapa R., Moldestad Br., Eikeland M.S. Methanol Synthesis from Syngas: a Process Simulation. In: Proceedings of The First SIMS EUROSIM Conference on Modelling and Simulation, SIMS EUROSIM 2021, and 62nd International Conference of Scandinavian Simulation Society. 2022; 444–449. https://doi.org/10.3384/ecp21185444
38. Nielsen N.D., Jensen A.D., Christensen J.M. The roles of CO and CO2 in high pressure methanol synthesis over Cu-based catalysts. J. Catal. 2021;393:324–334. https://doi.org/10.1016/j.jcat.2020.11.035
39. Meshcheryakov G.V., Komissarov Yu.A., Mishanova V.A. Synthesis of methanol with two tubular reactors and selection of products of synthesis after each reactor. Bashkirskii khimicheskii zhurnal = Bashkir Chemical Journal. 2012;19(1):113–115 (in Russ.). https://www.elibrary.ru/oyeyrb
Review
For citations:
Larina O.M., Lishchiner I.I., Malova O.V., Faleeva Yu.M. Synthesis of methanol from gaseous products of pyrolysis of sewage sludge. Fine Chemical Technologies. 2025;20(6):540-554. https://doi.org/10.32362/2410-6593-2025-20-6-540-554. EDN: NAQGZO
JATS XML






















