Экстракция фурфурола из картофельной шелухи с помощью дихлорметана: термодинамика и кинетика
https://doi.org/10.32362/2410-6593-2025-20-5-454-473
EDN: NYBHED
Аннотация
Цели. Целью данного исследования является изучение кинетики и термодинамики экстракции фурфурола из кожуры сладкого картофеля с использованием дихлорметана (CH2Cl2) в качестве растворителя и серной кислоты в качестве катализатора. Для этого было решено определить кинетические параметры производства фурфурола, используя модели первого и второго порядка, оптимизировать температуру экстракции и оценить термодинамические свойства реакции.
Методы. Картофельная кожура была выбрана для экстракции фурфурола из-за высокого содержания в ней гемицеллюлозы, экономичности и экологичности. В качестве растворителя был выбран дихлорметан благодаря его безопасности, низкой энергоемкости и совместимости с экологически чистыми процессами экстракции. Условия эксперимента включали варьирование температур (60, 70 и 80°C) и размеров частиц порошка (<5 мм). В процессе эксперимента осуществлялся контроль на соответствие реакции кинетическим моделям и расчет термодинамических характеристик.
Результаты. Экспериментальные результаты показали, что кинетическая модель первого порядка лучше описывает реакцию, энергия активации (Eₐ) равна 85.99 кДж/моль. Термодинамический анализ показал изменение энтальпии (ΔH) на 83.14 кДж/моль, изменение энтропии (ΔS) на −86.08 Дж/(моль·К), а свободная энергия Гиббса (ΔG) варьировалась от 111.80 до 112.66 кДж/моль в зависимости от выбранных температур. При температуре 80°C были достигнуты оптимальные условия экстракции, и получена наиболее высокая концентрацию фурфурола методом гидролиза с использованием серной кислоты в качестве катализатора. Реакция имеет энергоемкий, но контролируемый характер, что говорит о необходимости дальнейшей оптимизации процесса.
Выводы. Исследование продемонстрировало эффективность дихлорметана в качестве растворителя для экстракции фурфурола из кожуры сладкого картофеля при оптимальных условиях. Кинетические и термодинамические результаты проясняют механизм реакции и обосновывают ее промышленное применение. Будущие исследования должны быть сосредоточены на моделировании выделения фурфурола из тройных систем растворителей с использованием Aspen Plus для повышения устойчивости и масштабируемости.
Ключевые слова
Об авторах
А. М. AbubakarНигерия
Abdulhalim Musa Abubakar, Master (Eng.), Lecturer
P.M.B. 2076, Yola, Adamawa State
Scopus Author ID 58150539400
I. T. Umar
Нигерия
Iyisikwe Tanimu Umar, Bachelor (Eng.), Undergraduate Student
P.M.B. 2076, Yola, Adamawa State
A.-G.M. Akintunde
Нигерия
Abass-Giwa Muhammed Akintunde, Bachelor (Eng.), Undergraduate Student
P.M.B. 1069, Bama Road, Maiduguri, Borno State
М. J. Aliyu
Нигерия
Muhammad Jimada Aliyu, Bachelor (Eng.), Graduate Trainee Engineer
P.M.B. 65, Minna, Niger State
М. Al-Hedrewy
Ирак
Marwea Al-Hedrewy, PhD., Associate Professor
Al Diwaniyah, Iraq
ScopusAuthor ID 59331742300
U. Raheja
Индия
Uday Raheja, Bachelor (Eng.), Student
140401, Rajpura, Punjab
Список литературы
1. Rachamontree P., Douzou T., Cheenkachorn K., SriariyanunM., RattanapornK. Furfural: Asustainable platform chemical and fuel. Appl. Sci. Eng. Prog. 2020;13(1):3–10. https://doi.org/10.14416/j.asep.2020.01.003
2. Win D.T. Furfural–Gold from garbage. Assumpt. Univ. J. Technol. (AU J.T.). 2005;8(4):185–190. Available: https://www.thaiscience.info/Journals/Article/AUJT/10290551.pdf. Accessed January 5, 2025.
3. NagarajuT V., Rao M V., Sunil B. M., Chaudhary B. Furfuralextracted corncob ash: A new geomaterial for sustainable construction. In: Hazarika H., Haigh S.K., Chaudhary B., Murai M., Manandhar S. (Eds.). Sustainable Construction Resources in Geotechnical Engineering (IC-CREST 2023). Lecture Notes in Civil Engineering. Singapore: Springer, 2024. V. 448. P. 155–162. https://doi.org/10.1007/978-981-99-9227-0_15
4. Kabbour M., Luque R. Furfural as a platform chemical: from production to applications. In: Recent Advances in Development of Platform Chemicals. ElsevierB.V.; 2020. Ch. 10. P. 283–297. https://doi.org/10.1016/B978-0-444-64307-0.00010-X
5. Madloom A.A., Jabbar S.M., Kadhim N.J. Furfural production based cellulosic garbage. Plant Arch. 2019;19(2):345–350. Available: https://www.plantarchives.org/SPL%20ISSUE%20SUPP%202,2019/63%20(345-350).pdf. Accessed January 5, 2025.
6. Garcıa-Domınguez M.T., Garcıa-Domınguez J.C., Lopez F., De Diego C.M., Diaz M.J. Maximizing furfural concentration from wheat straw and Eucalyptus globulus by nonisothermal autohydrolysis. Environ. Prog. Sustain. Energy. 2015;34(K):1236–1242. https://doi.org/10.1002/ep.12099
7. Yong T.L.-K., Mohamad N., Yusof N.N.M. Furfural production from oil palm biomass using a biomass-derived supercritical ethanol solvent and formic acid catalyst. Procedia Eng. 2016;148:392–400. https://doi.org/10.1016/j. proeng.2016.06.495
8. Eseyin A.E., Steele P.H. An overview of the applications of furfural and its derivatives. Int. J. Adv. Chem. 2015;3(2): 42–47. https://doi.org/10.14419/ijac.v3i2.5048
9. Brazdausks P., Puke M., Vedernikovs N., Kruma I. Influence of biomass pretreatment process time on furfural extraction from birch wood. Environ. Clim. Technol. 2013;11:5–11. https://doi.org/10.2478/rtuect-2013-0001
10. Gebre H., Fisha K., Kindeya T., Gebremicha T. Synthesis of furfural from bagasse. Int. Lett. Chem. Phys. Astron. 2015;57:72–84. https://doi.org/10.56431/p-5301hc, https://doi.org/10.18052/www.scipress.com/ILCPA.57.72
11. Yahyazadeh A. Extraction and investigation of furfural in tea leaves and comparing with furfural in rice hull. J. Pharm. Res. 2011;4(12):4338–4339. Available: https://www.jpronline.info. Accessed January 5, 2025.
12. Croker J.R. The Production of Furfural from Agricultural Waste in Australia: Masters Thesis. Degree of Master of Science in Food Technology. School of Food Technology, University of New South Wales. 1983. 139 p. https://doi.org/10.26190/unsworks/5665
13. Clauser N.M., Area M.C., Felissia F.E., Vallejos M.E. Techno-economic assessment of carbonyxlic acids, furfural, and pellet production in a pine sawdust biorefinery. Biofuels Bioprod. Biorefining. 2018;12(6):997–1012. https://doi.org/10.1002/bbb.1915
14. Luo A.Y., Li Z., Li X., et al. The production of furfural directly from hemicellulose in lignocellulosic biomass: A review. Catal. Today. 2018;319:14–24. https://doi. org/10.1016/j.cattod.2018.06.042
15. Gürbüz E.I., Gallo J.M.R., Alonso D.M., Wettstein S.G., Lim W.Y., Dumesic J.A. Conversion of hemicellulose into furfural using solid acid catalysts in γ -Valerolactone. Angew. Chem. Int. Ed. Zuschriften. 2013;52(4):1270–1274. https://doi.org/10.1002/anie.201207334
16. Agirrezabal-Telleria I., Gandarias I., Arias P.L. Production of furfural from pentosan-rich biomass: Analysis of process parameters during simultaneous furfural stripping. Bioresour. Technol. 2013;143:258–264. https://doi.org/10.1016/j.biortech.2013.05.082
17. Nunez F., Sumoza D., Garcia F., Rosales C., Jhonny J.M.B. Recovery and characterization of furfural obtained from rice husk. Ciencia en Revoluc. 2021;7(22):121–127. https://doi.org/10.5281/zenodo.6429799
18. Riera F.A., Alvarez R., Coca J. Production of furfural by acid hydrolysis of corncobs. J. Chem. Technol. Biotechnol. 1991;50(2):149–155. https://doi.org/10.1002/jctb.280500202
19. Peleteiro S., Rivas S., Alonso J.L., Santos V., Parajó J.C. Furfural production using ionic liquids: A review. Bioresour. Technol. 2016;202:181–191. https://doi.org/10.1016/j.biortech.2015.12.017
20. Zhao Y., Xu H., Wang K., et al. Enhanced furfural production from biomass and its derived carbohydrates in renewable butanone–water solvent system. Sustain. Energy Fuels. 2019;3(11):3208–3218. https://doi.org/10.1039/C9SE00459A
21. MaoL., ZhangL., GaoN., LiA. FeCl3 and acetic acid co-catalyzed hydrolysis of corncob for improving furfural production and lignin removal from residue. Bioresour. Technol. 2012;123: 324–331. https://doi.org/10.1016/j.biortech.2012.07.058
22. Li X.-K., Fang Z., Luo J., Su T.-C. Co-production of furfural and easily hydrolysable residue from sugarcane bagasse in MTHF/aqueous biphasic system: influence of acid species, NaCl addition and MTHF. ACS Sustain. Chem. Eng. 2016;4(10):5804–5813. https://doi.org/10.1021/acssuschemeng.6b01847
23. Martín M., Grossmann I.E. Optimal production of furfural and DMF from algae and switchgrass. Ind. Eng. Chem. Res. 2016;55(12):3192–3202. https://doi.org/10.1021/acs.iecr.5b03038
24. Bhaumik P., Dhepe P.L. Exceptionally high yields of furfural from assorted raw biomass over solid acids. RSC Adv. 2014;4(50):26215–26221. https://doi.org/10.1039/c4ra04119d
25. Ji H., Chen L., Zhu J., Gleisner R., Zhang X. Reaction kinetics based optimization of furfural production from corncob using a fully recyclable solid acid. Ind. Eng. Chem. Res. 2016;55(43):11253–11259. https://doi.org/10.1021/acs.iecr.6b03243
26. Chen H., Qin L., Yu B. Furfural production from steam explosion liquor of rice straw by solid acid catalysts (HZSM-5). Biomass and Bioenergy. 2014;73:77–83. https://doi.org/10.1016/j.biombioe.2014.12.013
27. Gallo J.M.R., Alonso D.M., Mellmer M.A., Yeap J.H., Wong H.C., Dumesic J.A. Production of furfural from lignocellulosic biomass using beta zeolite and biomassderived solvent. Top Catal. 2013;56(18–20):1774–1781. https://doi.org/10.1007/s11244-013-0113-3
28. Liu F., Boissou F., Vignault A., et al. Conversion of wheat straw to furfural and levulinic acid in a concentrated aqueous solution of betaıne hydrochloride. RSC Adv. 2014; 4(55):28836–28841. https://doi.org/10.1039/C4RA03878A
29. DelbecqF., WangY., LenC. Conversion ofxylose, xylan and rice husk into furfural via betaine and formic acid mixture as novel homogeneous catalyst in biphasic system by microwaveassisted dehydration. J. Mol. Catal. A Chem. 2016;423: 520–525. https://doi.org/10.1016/j.molcata.2016.07.003
30. Liu H., Hu H., Baktash M.M., Jahan M.S., Ahsan L., Ni Y. Kinetics of furfural production from pre-hydrolysis liquor (PHL) of a kraft-based hardwood dissolving pulp production process. Biomass and Bioenergy. 2014;66: 320–327. https://doi.org/10.1016/j.biombioe.2014.02.003
31. Kim E.S., Liu S., Abu-Omar M.M., Mosier N.S. Selective conversion of biomass hemicellulose to furfural using maleic acid with microwave heating. Energy Fuels. 2012; 26(2):1298−1304. https://doi.org/10.1021/ef2014106
32. Yemis O., Mazza G. Optimization of furfural and 5-hydroxymethylfurfural production from wheat straw by a microwave-assisted process. Bioresour. Technol. 2012;109: 215–223. https://doi.org/10.1016/j.biortech.2012.01.031
33. Mandalika A.S., Runge T.M. Improved method of producing furfural from biomass. In: Conf. Dallas, Texas, July 29 – August 1, 2012. 2012. 121337810. http://doi.org/10.13031/2013.41836
34. Montanã D., Salvadã J., Torras C., Farriol X. Hightemperature dilute-acid hydrolysis of olive stones for furfural production. Biomass and Bioenergy. 2002;22(4): 295–304. https://doi.org/10.1016/S0961-9534(02)00007-7
35. Weidener D., LeitnerW., De Maria P.D., Klose H., Grande P.M. Lignocellulose fractionation using recyclable phosphoric acid: Lignin, cellulose and furfural production. ChemSusChem. 2020;14(3):909–916. https://doi.org/10.1002/cssc.202002383
36. Sanchez V., Dafinov A., Salagre P., Llorca J., Cesteros Y. Microwave-assisted furfural production using hectorites and fluorohectorites as catalysts. Catalysts. 2019;9(9):706. https://doi.org/10.3390/catal9090706
37. Fan B., Kong L., He Y. Highly efficient production of furfural from corncob by barley hull biochar-based solid acid in cyclopentyl methyl ether–water system. Catalysts. 2024;14(9):583. https://doi.org/10.3390/catal14090583
38. Bao Y., Du Z., Liu X., et al. Furfural production from lignocellulosic biomass: one-step and two-step strategies and techno-economic evaluation. Green Chem. 2024;26(11): 6318–6338. https://doi.org/10.1039/D4GC00883A
39. Zhao Y., Lu K., Xu H., Zhu L., Wang S. A critical review of recent advances in the production of furfural and 5-hydroxymethylfurfural from lignocellulosic biomass through homogeneous catalytic hydrothermal conversion. Renew. Sustain. Energy Rev. 2021;139:110706. https://doi.org/10.1016/j.rser.2021.110706
40. Zhang T., Li W., Xiao H., Jin Y., Wu S. Recent progress in direct production of furfural from lignocellulosic residues and hemicellulose. Bioresour. Technol. 2022;354:127126. https://doi.org/10.1016/j.biortech.2022.127126
41. Yong K.J., Wu T.Y., Lee C.B.T.L., et al. Furfural production from biomass residues: Current technologies, challenges and future prospects. Biomass and Bioenergy. 2022;161:106458. https://doi.org/10.1016/j.biombioe.2022.106458
42. MuryantoM., SudiyaniY., HarahapA.F.P., GozanM. Furfural and derivatives from bagasse and corncob. In: Abd-Aziz S., Gozan M., Ibrahim M.F., Phang L.-Y. (Eds.). Chemical Substitutes from Agricultural and Industrial By‐Products: Bioconversion, Bioprocessing, and Biorefining. 2023. Ch. 14. P. 279–300. https://doi.org/10.1002/9783527841141.ch14
43. Lee C.B.T.L. and Wu T.Y. A review on solvent systems for furfural production from lignocellulosic biomass. Renew. Sustain. Energy Rev. 2020;137:110172. https://doi.org/10.1016/j.rser.2020.110172
44. Zhang X., Zhu P., Li Q., Xia H. Recent advances in the catalytic conversion of biomass to furfural in deep eutectic solvents. Front. Chem. 2022;10:911674. https://doi.org/10.3389/fchem.2022.911674
45. MohamadN., Abd-TalibN., YongT.-L.K. Furfural production from oil palm frond (OPF) under subcritical ethanol conditions. Mater. Today Proc. 2020;31(Part 1):116–121. https://doi.org/10.1016/j.matpr.2020.01.256
46. Raman J.K. and Gnansounou E. Furfural production from empty fruit bunch–A biorefinery approach. Ind. Crops Prod. 2015;69:371–377. https://doi.org/10.1016/j.indcrop.2015.02.063
47. Qatrunnada A., Muryanto M., Darmawan M.A., Gozan M. Optimization of furfural liquid-liquid extraction from oil palm empty fruit bunch hydrolysate solution with solvent variations. AIP Conf. Proc. 2024;3080(1):050002. (The 15th Asian Congress on Biotechnology in conjunction with the 7th International Symposium on Biomedical Engineering (ACB-ISBE 2022)). https://doi.org/10.1063/5.0198973
48. Othman N.E.A., Abd Aziz A., Wan Hassan W.H., Jailani N.F., Abd Hamid F., Abdul Wahab N. Production of furfural from oil palm fibres. J. Oil Palm Res. 2020;33(3): 473–481. Available: http://jopr.mpob.gov.my/. Accessed January 5, 2025.
49. Tareen A.K., Punsuvon V., Parakulsuksatid P. Conversion of steam exploded hydrolyzate of oil palm trunk to furfural by using sulfuric acid , solid acid, and base catalysts in one pot. Energy Sources, PartA: Recover. Util. Environ. Eff. 2020;46(1): 6126-6137. https://doi.org/10.1080/15567036.2020.1741733
50. García-Domínguez M.T., García-Domínguez J.C., FeriaM.J., Gómez-LozanoD.M., LópezF., DíazM.J. Furfural production from Eucalyptus globulus: Optimizing by using neural fuzzy models. Chem. Eng. J. 2013;221:185–192. https://doi.org/10.1016/j.cej.2013.01.099
51. López F., et al. Optimization of furfural production by acid hydrolysis of Eucalyptus globulus in two stages. Chem. Eng. J. 2014;240:195–201. https://doi.org/10.1016/j.cej.2013.11.073
52. Padilla-Rascón C., Romero-García J.M., Ruiz E., Romero I., Castro E. Microwave-assisted production of furfural from the hemicellulosic fraction of olive stones. Process Saf. Environ. Prot. 2021;152:630–640. https://doi.org/10.1016/j.psep.2021.06.035
53. Rivas S., Vila C., Santos V., Parajó J.C. Furfural production from birch hemicelluloses by two-step processing: a potential technology for biorefineries. Holzforschung. 2016;70(10): 901–910. https://doi.org/10.1515/hf-2015-0255
54. Brazdausks P., Puke M., Vedernikovs N., Irçna K. The effect of catalyst amount on the production of furfural and acetic acid from birch wood in a biomass pretreatment process. Baltic Forestry. 2014;20(1):106–114. Available: https://ortus.rtu.lv/science/en/publications/18956. Accessed January 5, 2025.
55. Brazdausks P., Vedernikovs N., Puke M., Kruma I. Effect of the acid hydrolysis temperature on the conversion of birch wood hemicelluloses into furfural. Key Eng. Mater. 2014;604: 245–248. https://doi.org/10.4028/www.scientific.net/KEM.604.245
56. García M.T., Zamudio M.A.M., Loaiza J.M., et al. Characterization and use of southern cattail for biorefiningbased production of furfural. Biomass Convers. Bioref. 2019;9:333–339. https://doi.org/10.1007/s13399-018-0355-1
57. Kazemi M., Zand-Monfared M.R. Furfural production from pisthachio green hulls as agricultural residues. J. Appl. Chem. Res. 2010;3(12):19–24. Available: http://www.sid.ir/. URL: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a614365d06f93de64cb2c2345fe3855f7824b198. Accessed January 5, 2025.
58. Yue Z., Sun L.-L., Sun S.-N., Cao X.-F., Wen J.-L., Zhu M.-Q. Structure of corn bran hemicelluloses isolated with aqueous ethanol solutions and their potential to produce furfural. Carbohydr. Polym. 2022;288:119420. https://doi.org/10.1016/j.carbpol.2022.119420
59. Mao L., Zhang L., Gao N., Li A. Seawater based furfural production via corncob hydrolysis catalyzed by FeCl3 in acetic acid steam. Green Chem. 2013;15(3):727–737. https://doi.org/10.1039/C2GC36346A
60. Barbosa B.M., Colodette J.L., Junior D.L., Gomes F.J.B., Martino D.C. Preliminary studies on furfural production from lignocellulosics. J. Wood Chem. Technol. 2014;34(3):37–41. https://doi.org/10.1080/02773813.2013.844167
61. Soludongwe S.M. Co-production of furfural and wood composite products from bio-based processing residues: Thesis for Degree of Master ofAgricultural Sciences. Faculty of AgriSciences, Stellenbosch University. 2020. Available: https://scholar.sun.ac.za. Accessed January 5, 2025.
62. Bariani M., Boix E., Cassella F., Cabrera M.N. Furfural production from rice husks within a biorefinery framework. Biomass Convers. Bioref. 2021;11:781–794. https://doi.org/10.1007/s13399-020-00810-1
63. Sashikala M., Ong H.K. Synthesis and identification of furfural from rice straw. J. Trop. Agric. Food Sci. 2007;35(1):165–172. Available: https://jtafs.mardi.gov.my/ jtafs/35-1/Furfural.pdf. Accessed January 5, 2025.
64. Sashikala M., Ong H.K. Synthesis, identification and evaluation of furfural from rice straw. J. Trop. Agric. Food Sci. 2009;37(1):95–101. Available: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20113329392. Accessed January 5, 2025.
65. Singh A., Das K., Sharmab D.K. Production of xylose, furfural, fermentable sugars and ethanol from agricultural residues. J. Chem. Technol. Biotechnol. 1984;34(2):51–61. https://doi.org/10.1002/jctb.5040340203
66. Uppal S.K., Gupta R., Dhillon R.S., Bhatia S. Potential of sugarcane bagasse for production of furfural and its derivatives. Sugar Tech. 2009;10(4):298–301. http://doi.org/10.1007/s12355-008-0053-6
67. Uppal S.K., Kaur R. Hemicellulosic furfural production from sugarcane bagasse using different acids. Sugar Tech. 2011;13(2):166–169. https://doi.org/10.1007/s12355-011-0081-5
68. Wang Q., Zhuang X., Wang W., Tan X., Yu Q., Qi W. Rapid and simultaneous production of furfural and celluloserich residue from sugarcane bagasse using a pressurized phosphoric acid-acetone-water system. Chem. Eng. J. 2017;334:698–706. https://doi.org/10.1016/j.cej.2017.10.089
69. Gomes G.R., Scopel E., Breitkreitz M.C., Rezende C.A., Pastre J.C. Valorization of sugarcane bagasse C5-fraction by furfural production mediated by renewable glycine-based ionic liquid. Ind. Crops Prod. 2022;191(Part A):115940. https://doi.org/10.1016/j.indcrop.2022.115940
70. Ji H., Zhu J.Y., Gleisner R. Integrated production of furfural and levulinic acid from corncob in a onepot batch reaction incorporating distillation using step temperature profiling. RSC Adv. 2017:7(73):46208–46214. https://doi.org/10.1039/c7ra08818c
71. Ren J., Wang W., Yan Y., Deng A., Chen Q., Zhao L. Microwave-assisted hydrothermal treatment of corncob using tin(IV) chloride as catalyst for furfural production. Cellulose. 2016;23(3):1649–1661. https://doi.org/10.1007/s10570-016-0898-x
72. Wang Q., et al. Production of furfural with high yields from corncob under extremely low water/solid ratios. Renew. Energy. 2019;144:139–146. https://doi.org/10.1016/j.renene.2018.07.095
73. Bu L., Tang Y., Gao Y., Jian H., Jiang J. Comparative characterization of milled wood lignin from furfural residues and corncob. Chem. Eng. J. 2011;175:176–184. https://doi.org/10.1016/j.cej.2011.09.091
74. Castro G.A.D., Batista R.C., De Sousa R. de C.S., Carneiro A. de C.O., Fernandes S.A. Green synthesis offurfural from xylose and corn cob biomas. React. Chem. Eng. 2023;(8):1969–1980. https://doi.org/10.1039/D3RE00017F
75. Chen Z., Reznicek W.D., Wan C. Aqueous choline chloride: A novel solvent for switchgrass fractionation and subsequent hemicellulose conversion into furfural. ACS Sustain. Chem. Eng. 2018;6(8):6910–6919. https://doi.org/10.1021/acssuschemeng.8b00728
76. Lee C.B.T.L., Wu T.Y., Cheng C.K., Siow L.F., Chew I.M.L. Nonsevere furfural production using ultrasonicated oil palm fronds and aqueous choline chloride-oxalic acid. Ind. Crops Prod. 2021;166:113397. https://doi.org/10.1016/j.indcrop.2021.113397
77. Eifert T., Liauw M.A. Process analytical technology (PAT) applied to biomass valorisation: a kinetic study on the multiphase dehydration of xylose to furfural. React. Chem. Eng. 2016;1(5):521–532. https://doi.org/10.1039/C6RE00082G
78. Scapin E., Rambo M.K.D., Viana G.C.C., et al. Sustainable production of furfural and 5-hidroximetilfurfural from rice husks and soybean peel by using ionic liquid. Food Sci. Technol. 2020;40(Suppl. 1):83–87. https://doi.org/10.1590/fst.04419
79. Lin K.-H., Huang M.-H., Chang A.C.-C. Liquid phase reforming of rice straw for furfural production. Int. J. Hydrogen Energy. 2013;38(35):15794–15800. https://doi.org/10.1016/j.ijhydene.2013.06.088
80. Dussan K., Girisuta B., Haverty D., Leahy J.J., Hayes M.H.B. Kinetics of levulinic acid and furfural production from Miscanthus x giganteus. Bioresour. Technol. 2013;149: 216–224. https://doi.org/10.1016/j.biortech.2013.09.006
81. Al Rashdi S., Al Balushi A., Patil G. Optimized extraction of furfural from omani date palm seeds: A comparative study of soxhlet and distillation techniques. Multidiscip. Sci. J. 2025;7:e2025005. https://doi.org/10.31893/multiscience.2025005
82. Al-Rahbi B.S.N., Dwivedi P.B. Extraction and characterization of furfural from waste Omani date seeds. Green Chem. Technol. Lett. 2016;2(4):219–223. https://doi.org/10.18510/gctl.2016.249
83. Sweygers N., Depuydt D.E.C., Vuure A.W.V., et al. Simultaneous production of 5-hydroxymethylfurfural and furfural from bamboo (Phyllostachys nigra ‘Boryana’) inabiphasic reaction system. Chem. Eng.J. 2020;386:123957. https://doi.org/10.1016/j.cej.2019.123957
84. Xia Q., Peng H., Zhang Y., et al. Microwave assisted furfural production from xylose and bamboo hemicellulose in a biphasic medium. Biomass Convers. Bioref. 2021;13(9): 7895–7907. https://doi.org/10.1007/s13399-021-01870-7
85. Senila L., Miclean M., Senila M., Roman M., Roman C. New analysis method of furfural obtained from wood applying an autohydrolysis pretreatment. Rom. Biotechnol. Lett. 2013;18(1):7947–7955. Available: https://www.biotehgen. eu/RBL/8 Senila.pdf. Accessed January 5, 2025.
86. Gao H., Liu H., Pang B., et al. Production of furfural from waste aqueous hemicellulose solution of hardwood over ZSM-5 zeolite. Bioresour. Technol. 2014;172:453–456. https://doi.org/10.1016/j.biortech.2014.09.026
87. Liu H., Hu H., Jahan M.S., Ni Y. Furfural formation from the pre-hydrolysis liquor of a hardwood kraft-based dissolving pulp production process. Bioresour. Technol. 2013;131: 315–320. https://doi.org/10.1016/j.biortech.2012.12.158
88. Ntimbani R.N., Farzad S., Görgens J.F. Furfural production from sugarcane bagasse along with co-production of ethanol from furfural residues. Biomass Convers. Bioref. 2021;12: 5257–5267. https://doi.org/10.1007/s13399-021-01313-3
89. Rivera Cedillo E.E., González Chávez M.M., Handy B.E., Quintana Olivera M.F., López Mercado J., Cárdenas Galindo M. Acid catalyzed transformation of orange waste into furfural: the effect of pectin degree of esterification. Bioresour. Bioprocess. 2024;11:52. https://doi.org/10.1186/s40643-024-00768-2
90. Sattar M.A., Chakraborty A.K., Al-Reza S.M., Islam S. Extraction and estimation of furfural from decorative plants grown in Bangladesh. Bangladesh J. Sci. Ind. Res. 2007;42(4):495–498. https://doi.org/10.3329/bjsir.v42i4.759
91. Iriany I., Taslim T., Bani O., Pratama A.J. Potential of lime as a green catalyst in the manufacture of furfural from Mikania micrantha. IOPConf. Ser.: Earth Environ. 2021;713(1):012038. http://doi.org/10.1088/1755-1315/713/1/012038
92. Uy J.R., Careo N.D., Llarena D., Barajas J.R. Optimization of furfural extraction from Theobrama cacao wastes using response surface methodology. MATEC Web Conf. (RSCE 2018). 2019;268(4):06010. https://doi.org/10.1051/MATECCONF/201926806010
93. Huang L., Peng H., Xiao Z., et al. Production of furfural and 5-hydroxymethyl furfural from Camellia oleifera fruit shell in [Bmim]HSO4/H2O/1,4-dioxane biphasic medium. Ind. Crops Prod. 2022;184(18):15006. https://doi.org/10.1016/j.indcrop.2022.115006
94. Liu L., Chang H.-M., Jameel H., Park S. Furfural production from biomass pretreatment hydrolysate using vaporreleasing reactor system. Bioresour. Technol. 2018;252: 165–171. https://doi.org/10.1016/j.biortech.2018.01.006
95. Stamigna C., Chiaretti D., Chiaretti E., Prosini P.P. Oil and furfural recovery from Brassica carinata. Biomass and Bioenergy. 2012;39:478–483. https://doi.org/10.1016/j.biombioe.2011.12.024
96. GongL., ZhaJ., PanL., MaC., HeY.-C. Highly efficient conversion of sunflower stalk-hydrolysate to furfural by sunflower stalk residue-derived carbonaceous solid acid in deep eutectic solvent/ organic solvent system. Bioresour. Technol. 2022;351:126945. https://doi.org/10.1016/j.biortech.2022.126945
97. Zha J., Fan B., He J., He Y.-C., Ma C. Valorization of biomass to furfural by chestnut shell-based solid acid in methyl isobutyl ketone–water–sodium chloride system. Appl. Biochem. Biotechnol. 2022;194:2021–2035. https://doi.org/10.1007/s12010-021-03733-3
98. Yue Z., Sun L.-L., Wen J.-L., Yao S.-Q., Sun S.-N., Cao X.-F. Simultaneous production of furfural, lignin and cellulose-rich residue from by ChCl/ 1,2-propanediol/MIBK biphasic system pretreatment. Int. J. Biol. Macromol. 2024;271(Part 1):133522. https://doi.org/10.1016/j.ijbiomac.2024.133522
99. Adebayo A.J., Ogunjobi J.K., Oluwasina O.O., Lajide L. Comparative production and optimisation of furfural and furfuryl alcohol from agricultural wastes. Chem. Africa. 2023;6:2401–2417. https://doi.org/10.1007/s42250-023-00594-7
100. Dutta S., De S., Saha B., Alam I. Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels. Catal. Sci. Technol. 2012;2(10):2025–2036. https://doi.org/10.1039/c2cy20235b
101. Cai C.M., Zhang T., Kumar R., Wyman C.E. Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass. J. Chem. Technol. Biotechnol. 2014;89(1):2–10. https://doi.org/10.1002/jctb.4168
102. Piñeiro-García A., González-Alatorre G., Vega-Díaz S.M., Pérez-Pérez M.C.I., Tristan F., Patiño-Herrera R. Reduced graphene oxide coating with high performance for the solid phase micro extraction of furfural in espresso coffee. J. Food Meas. Charact. 2019;14(4):314–321. https://doi.org/10.1007/s11694-019-00293-3
103. Jung K., You S.K., Moon S., Lee U. Furfural from pine needle extract inhibits the growth of a plant pathogenic fungus, Alternaria mali. Mycobiology. 2018;35(1):39–43. https://doi.org/10.4489/MYCO.2007.35.1.039
104. Zhuang Y., Si Z., Pang S., Wu H., Zhang X., Qin P. Recent progress in pervaporation membranes for furfural recovery: A mini review. J. Clean. Prod. 2023;396:136481. https://doi.org/10.1016/j.jclepro.2023.136481
105. Ambalkar V.U., Talib M.I. Synthesis of furfural from lignocellulosic biomass as agricultural residues: A review. Int. J. Eng. Sci. 2012;1(1):30–36. Available: http://www.theijes.com/papers/v1-i1/G011030036.pdf. Accessed January 5, 2025.
106. Hidajati N. The treatment of the corn-knob as a raw material for making furfural. J. Ilmu Dasar. 2007;8(1):45–53. Available: https://jurnal.unej.ac.id/index.php/JID/article/view/129. Accessed January 5, 2025.
107. Nsubuga H., Basheer C., Al-Muallem H.A.S., Kalanthoden A.N. Isolation, characterization and evaluation of photochemical potential of rice husk-based furfural via continuous flow reactor. J. Environ. Chem. Eng. 2016;4(1): 857–863. https://doi.org/10.1016/j.jece.2015.12.026
108. Li Q., Ma C.-L., Zhang P.-Q., Li Y.-Y., Zhu X., He Y.-C. Effective conversion of sugarcane bagasse to furfural by coconut shell activated carbon-based solid acid for enhancing whole-cell biosynthesis of furfurylamine. Ind. Crop. Prod. 2020;160:113169. https://doi.org/10.1016/j. indcrop.2020.113169
109. Sherif N., Gadalla M., Kamel D. Acid–hydrolysed furfural production from rice straw bio-waste: Process synthesis, simulation, and optimisation. South African J. Chem. Eng. 2021;38:34–40. https://doi.org/10.1016/j.sajce.2021.08.002
110. Contreras-Zarazúa G., Martin-Martin M., SanchezRamirez E., Segovia-Hernandez J.G. Furfural production from agricultural residues using different intensified separation and pretreatment alternatives . Economic and environmental assessment. Chem. Eng. Process. Intensif. 2021;171:108569. https://doi.org/10.1016/j.cep.2021.108569
111. Li X., Liu Q., Luo C., Gu X., Lu L., Lu X. Kinetics of furfural production from corn cob in γ Valerolactone using dilute sulfuric acid as catalyst. ACS Sustain. Chem. Eng. 2017;5(10): 8587–8593. https://doi.org/10.1021/acssuschemeng.7b00950
112. Xiang Z., Runge T. Co-production of feed and furfural from dried distillers’ grains to improve corn ethanol profitability. Ind. Crop. Prod. 2014;55:207–216. https://doi.org/10.1016/j.indcrop.2014.02.025
113. Ye L., Han Y., Wang X., Lu X., Qi X., Yu H. Recent progress in furfural production from hemicellulose and its derivatives: Conversion mechanism, catalytic system, solvent selection. Mol. Catal. 2021;515:111899. https://doi.org/10.1016/j.mcat.2021.111899
114. Cousin E., Namhaed K., Pérès Y., et al. Towards efficient and greener processes for furfural production from biomass: A review of the recent trends. Sci. Total Environ. 2022;847: 157599. https://doi.org/10.1016/j.scitotenv.2022.157599
115. Iroha N.B., Akaranta O., James A.O. Red onion skin extractfurfural resin as corrosion inhibitor for aluminium in acid medium. Der Chem. Sin. 2012;3(4):995–1001. Available: http://www.pelagiaresearchlibrary.com/der-chemica-sinica/vol3-iss4/DCS-2012-3-4-995-1001.pdf. Accessed January 5, 2025.
116. Nie Y., Hou Q., Li W., Bai C., Bai X., Ju M. Efficient synthesis of furfural from biomass using SnCl4 as catalyst in ionic liquid. Molecules. 2019;24(3):594. https://doi.org/10.3390/molecules24030594
117. LaForge F.B. The production of furfural by the action of superheated water on aqueous corncob extract. J. Ind. Eng. Chem. 2000;13(11):1024–1025. https://doi.org/10.1021/ie50143a029
118. Li H., Dai Q., Ren J., et al. Effect of structural characteristics of corncob hemicelluloses fractionated by graded ethanol precipitation on furfural production. Carbohydr. Polym. 2016;136:203–209. https://doi.org/10.1016/j.carbpol.2015.09.045
119. Edumujeze D., Fournier-Salaün M.-C., Leveneur S. Production of furfural: From kinetics to process assessment. Fuel. 2025;381(Part B):133423. https://doi.org/10.1016/j.fuel.2024.133423
120. MazarA., Jemaa N., Al DajaniW.W., MarinovaM., PerrierM. Furfural production from a pre-hydrolysate generated using aspen and maple chips. Biomass and Bioenergy. 2017;104: 8–16. https://doi.org/10.1016/j.biombioe.2017.05.016
121. Noda T., Takahata Y., Sato T. Sugar composition of cell wall material from sweet potatoes differing in stages of development, tissue zone and variety. Oyo Toshitsu Kagaku. 1994;41(3):311–316. Available: https://www.jstage.jst.go.jp/article/jag1994/41/3/41_3_311/_pdf. Accessed January 5, 2025.
122. Dias A.S., Lima S., Pillinger M., Valente A.A. Furfural and furfural-based industrial chemicals. In: Pignataro B. (Ed.). Ideas in Chemistry and Molecular Sciences: Advances in Synthetic Chemistry. Part III. Chemical Reactions, Sustainable Processes, and Environment. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2010. Ch. 8. P. 165–185. https://doi.org/10.1002/9783527630554.ch8
123. Xu W., Zhang S., Lu J., Cai Q. Furfural production from corncobs using Thiourea as additive. Environ. Prog. Sustain. Energy. 2017;36(3):690–695. https://doi.org/10.1002/ep.12489
124. Jorqueira D.S.S., de Lima L.F., Maya S.F., et al. Critical review of furfural and furfuryl alcohol production: Past, present, and future on heterogeneous catalysis. Appl. Catal. A: Gen. 2023;665:119360. https://doi.org/10.1016/j.apcata.2023.119360
Рецензия
Для цитирования:
Abubakar А.М., Umar I.T., Akintunde A., Aliyu М.J., Al-Hedrewy М., Raheja U. Экстракция фурфурола из картофельной шелухи с помощью дихлорметана: термодинамика и кинетика. Тонкие химические технологии. 2025;20(5):454-473. https://doi.org/10.32362/2410-6593-2025-20-5-454-473. EDN: NYBHED
For citation:
Abubakar A., Umar I., Akintunde A., Aliyu M., Al-Hedrewy M., Raheja U. Dichloromethane solvent for furfural recovery from potato peels: Thermodynamic and kinetic investigations. Fine Chemical Technologies. 2025;20(5):454-473. https://doi.org/10.32362/2410-6593-2025-20-5-454-473. EDN: NYBHED






















