Preview

Fine Chemical Technologies

Advanced search

Dichloromethane solvent for furfural recovery from potato peels: Thermodynamic and kinetic investigations

https://doi.org/10.32362/2410-6593-2025-20-5-454-473

EDN: NYBHED

Abstract

Objectives. This study aims to investigate the kinetics and thermodynamics of furfural extraction from sweet potato peels using dichloromethane (CH2Cl2) as a solvent and sulfuric acid as a catalyst. To that end, we set out to determine the kinetic parameters for furfural production using first- and second-order models, optimize the extraction temperature, and evaluate the thermodynamic properties of the reaction.

Methods. Potato peels, selected for their high hemicellulose content, cost-effectiveness, and sustainability, were processed with dichloromethane, selected for its safety, low energy requirements, and compatibility with green extraction processes. Experimental conditions involved varying temperatures (60, 70, and 80°C) and peel powder particle sizes (<5 mm), with the reaction being monitored to fit kinetic models and calculate thermodynamic properties.

Results. Experimental findings revealed that the first-order kinetic model provided the best fit, with an activation energy (Eₐ) of 85.99 kJ/mol. Thermodynamic analysis showed an enthalpy change (ΔH) of 83.14 kJ/mol, entropy change (ΔS) of −86.08 J/(mol·K), and Gibbs free energy (ΔG) values ranging from 111.80 to 112.66 kJ/mol across the studied temperatures. Optimal extraction conditions were achieved at 80°C, yielding the highest furfural concentration through acid-catalyzed hydrolysis. The energy-intensive yet controlled nature of the reaction highlights the need for further optimization.

Conclusions. This study demonstrates the effectiveness of dichloromethane as a solvent for furfural extraction from sweet potato peels under optimized conditions. The kinetic and thermodynamic findings elucidate the reaction mechanism and its industrial applicability. Future studies should focus on simulating furfural separation from ternary solvent systems using Aspen Plus to enhance sustainability and scalability.

About the Authors

A. Abubakar
Department of Chemical Engineering, Faculty of Engineering, Modibbo Adama University
Nigeria

Abdulhalim Musa Abubakar, Master (Eng.), Lecturer

P.M.B. 2076, Yola, Adamawa State

Scopus Author ID 58150539400



I. Umar
Department of Chemical Engineering, Faculty of Engineering, Modibbo Adama University
Nigeria

Iyisikwe Tanimu Umar, Bachelor (Eng.), Undergraduate Student

P.M.B. 2076, Yola, Adamawa State



A.-G.M. Akintunde
Department of Chemical Engineering, Faculty of Engineering, Modibbo Adama University
Nigeria

Abass-Giwa Muhammed Akintunde, Bachelor (Eng.), Undergraduate Student

P.M.B. 1069, Bama Road, Maiduguri, Borno State



M. Aliyu
Chemical Engineering Department, School of Infrastructure, Process Engineering and Technology, Federal University of Technology
Nigeria

Muhammad Jimada Aliyu, Bachelor (Eng.), Graduate Trainee Engineer

P.M.B. 65, Minna, Niger State



M. Al-Hedrewy
College of Technical Engineering, the Islamic University; College of Technical Engineering, the Islamic University of Al Diwaniyah
Iraq

Marwea Al-Hedrewy, PhD., Associate Professor

 Al Diwaniyah, Iraq

ScopusAuthor ID 59331742300



U. Raheja
Center for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology (CUIET)
India

Uday Raheja, Bachelor (Eng.), Student

140401, Rajpura, Punjab



References

1. Rachamontree P., Douzou T., Cheenkachorn K., SriariyanunM., RattanapornK. Furfural: Asustainable platform chemical and fuel. Appl. Sci. Eng. Prog. 2020;13(1):3–10. https://doi.org/10.14416/j.asep.2020.01.003

2. Win D.T. Furfural–Gold from garbage. Assumpt. Univ. J. Technol. (AU J.T.). 2005;8(4):185–190. Available: https://www.thaiscience.info/Journals/Article/AUJT/10290551.pdf. Accessed January 5, 2025.

3. NagarajuT V., Rao M V., Sunil B. M., Chaudhary B. Furfuralextracted corncob ash: A new geomaterial for sustainable construction. In: Hazarika H., Haigh S.K., Chaudhary B., Murai M., Manandhar S. (Eds.). Sustainable Construction Resources in Geotechnical Engineering (IC-CREST 2023). Lecture Notes in Civil Engineering. Singapore: Springer, 2024. V. 448. P. 155–162. https://doi.org/10.1007/978-981-99-9227-0_15

4. Kabbour M., Luque R. Furfural as a platform chemical: from production to applications. In: Recent Advances in Development of Platform Chemicals. ElsevierB.V.; 2020. Ch. 10. P. 283–297. https://doi.org/10.1016/B978-0-444-64307-0.00010-X

5. Madloom A.A., Jabbar S.M., Kadhim N.J. Furfural production based cellulosic garbage. Plant Arch. 2019;19(2):345–350. Available: https://www.plantarchives.org/SPL%20ISSUE%20SUPP%202,2019/63%20(345-350).pdf. Accessed January 5, 2025.

6. Garcıa-Domınguez M.T., Garcıa-Domınguez J.C., Lopez F., De Diego C.M., Diaz M.J. Maximizing furfural concentration from wheat straw and Eucalyptus globulus by nonisothermal autohydrolysis. Environ. Prog. Sustain. Energy. 2015;34(K):1236–1242. https://doi.org/10.1002/ep.12099

7. Yong T.L.-K., Mohamad N., Yusof N.N.M. Furfural production from oil palm biomass using a biomass-derived supercritical ethanol solvent and formic acid catalyst. Procedia Eng. 2016;148:392–400. https://doi.org/10.1016/j. proeng.2016.06.495

8. Eseyin A.E., Steele P.H. An overview of the applications of furfural and its derivatives. Int. J. Adv. Chem. 2015;3(2): 42–47. https://doi.org/10.14419/ijac.v3i2.5048

9. Brazdausks P., Puke M., Vedernikovs N., Kruma I. Influence of biomass pretreatment process time on furfural extraction from birch wood. Environ. Clim. Technol. 2013;11:5–11. https://doi.org/10.2478/rtuect-2013-0001

10. Gebre H., Fisha K., Kindeya T., Gebremicha T. Synthesis of furfural from bagasse. Int. Lett. Chem. Phys. Astron. 2015;57:72–84. https://doi.org/10.56431/p-5301hc, https://doi.org/10.18052/www.scipress.com/ILCPA.57.72

11. Yahyazadeh A. Extraction and investigation of furfural in tea leaves and comparing with furfural in rice hull. J. Pharm. Res. 2011;4(12):4338–4339. Available: https://www.jpronline.info. Accessed January 5, 2025.

12. Croker J.R. The Production of Furfural from Agricultural Waste in Australia: Masters Thesis. Degree of Master of Science in Food Technology. School of Food Technology, University of New South Wales. 1983. 139 p. https://doi.org/10.26190/unsworks/5665

13. Clauser N.M., Area M.C., Felissia F.E., Vallejos M.E. Techno-economic assessment of carbonyxlic acids, furfural, and pellet production in a pine sawdust biorefinery. Biofuels Bioprod. Biorefining. 2018;12(6):997–1012. https://doi.org/10.1002/bbb.1915

14. Luo A.Y., Li Z., Li X., et al. The production of furfural directly from hemicellulose in lignocellulosic biomass: A review. Catal. Today. 2018;319:14–24. https://doi. org/10.1016/j.cattod.2018.06.042

15. Gürbüz E.I., Gallo J.M.R., Alonso D.M., Wettstein S.G., Lim W.Y., Dumesic J.A. Conversion of hemicellulose into furfural using solid acid catalysts in γ -Valerolactone. Angew. Chem. Int. Ed. Zuschriften. 2013;52(4):1270–1274. https://doi.org/10.1002/anie.201207334

16. Agirrezabal-Telleria I., Gandarias I., Arias P.L. Production of furfural from pentosan-rich biomass: Analysis of process parameters during simultaneous furfural stripping. Bioresour. Technol. 2013;143:258–264. https://doi.org/10.1016/j.biortech.2013.05.082

17. Nunez F., Sumoza D., Garcia F., Rosales C., Jhonny J.M.B. Recovery and characterization of furfural obtained from rice husk. Ciencia en Revoluc. 2021;7(22):121–127. https://doi.org/10.5281/zenodo.6429799

18. Riera F.A., Alvarez R., Coca J. Production of furfural by acid hydrolysis of corncobs. J. Chem. Technol. Biotechnol. 1991;50(2):149–155. https://doi.org/10.1002/jctb.280500202

19. Peleteiro S., Rivas S., Alonso J.L., Santos V., Parajó J.C. Furfural production using ionic liquids: A review. Bioresour. Technol. 2016;202:181–191. https://doi.org/10.1016/j.biortech.2015.12.017

20. Zhao Y., Xu H., Wang K., et al. Enhanced furfural production from biomass and its derived carbohydrates in renewable butanone–water solvent system. Sustain. Energy Fuels. 2019;3(11):3208–3218. https://doi.org/10.1039/C9SE00459A

21. MaoL., ZhangL., GaoN., LiA. FeCl3 and acetic acid co-catalyzed hydrolysis of corncob for improving furfural production and lignin removal from residue. Bioresour. Technol. 2012;123: 324–331. https://doi.org/10.1016/j.biortech.2012.07.058

22. Li X.-K., Fang Z., Luo J., Su T.-C. Co-production of furfural and easily hydrolysable residue from sugarcane bagasse in MTHF/aqueous biphasic system: influence of acid species, NaCl addition and MTHF. ACS Sustain. Chem. Eng. 2016;4(10):5804–5813. https://doi.org/10.1021/acssuschemeng.6b01847

23. Martín M., Grossmann I.E. Optimal production of furfural and DMF from algae and switchgrass. Ind. Eng. Chem. Res. 2016;55(12):3192–3202. https://doi.org/10.1021/acs.iecr.5b03038

24. Bhaumik P., Dhepe P.L. Exceptionally high yields of furfural from assorted raw biomass over solid acids. RSC Adv. 2014;4(50):26215–26221. https://doi.org/10.1039/c4ra04119d

25. Ji H., Chen L., Zhu J., Gleisner R., Zhang X. Reaction kinetics based optimization of furfural production from corncob using a fully recyclable solid acid. Ind. Eng. Chem. Res. 2016;55(43):11253–11259. https://doi.org/10.1021/acs.iecr.6b03243

26. Chen H., Qin L., Yu B. Furfural production from steam explosion liquor of rice straw by solid acid catalysts (HZSM-5). Biomass and Bioenergy. 2014;73:77–83. https://doi.org/10.1016/j.biombioe.2014.12.013

27. Gallo J.M.R., Alonso D.M., Mellmer M.A., Yeap J.H., Wong H.C., Dumesic J.A. Production of furfural from lignocellulosic biomass using beta zeolite and biomassderived solvent. Top Catal. 2013;56(18–20):1774–1781. https://doi.org/10.1007/s11244-013-0113-3

28. Liu F., Boissou F., Vignault A., et al. Conversion of wheat straw to furfural and levulinic acid in a concentrated aqueous solution of betaıne hydrochloride. RSC Adv. 2014; 4(55):28836–28841. https://doi.org/10.1039/C4RA03878A

29. DelbecqF., WangY., LenC. Conversion ofxylose, xylan and rice husk into furfural via betaine and formic acid mixture as novel homogeneous catalyst in biphasic system by microwaveassisted dehydration. J. Mol. Catal. A Chem. 2016;423: 520–525. https://doi.org/10.1016/j.molcata.2016.07.003

30. Liu H., Hu H., Baktash M.M., Jahan M.S., Ahsan L., Ni Y. Kinetics of furfural production from pre-hydrolysis liquor (PHL) of a kraft-based hardwood dissolving pulp production process. Biomass and Bioenergy. 2014;66: 320–327. https://doi.org/10.1016/j.biombioe.2014.02.003

31. Kim E.S., Liu S., Abu-Omar M.M., Mosier N.S. Selective conversion of biomass hemicellulose to furfural using maleic acid with microwave heating. Energy Fuels. 2012; 26(2):1298−1304. https://doi.org/10.1021/ef2014106

32. Yemis O., Mazza G. Optimization of furfural and 5-hydroxymethylfurfural production from wheat straw by a microwave-assisted process. Bioresour. Technol. 2012;109: 215–223. https://doi.org/10.1016/j.biortech.2012.01.031

33. Mandalika A.S., Runge T.M. Improved method of producing furfural from biomass. In: Conf. Dallas, Texas, July 29 – August 1, 2012. 2012. 121337810. http://doi.org/10.13031/2013.41836

34. Montanã D., Salvadã J., Torras C., Farriol X. Hightemperature dilute-acid hydrolysis of olive stones for furfural production. Biomass and Bioenergy. 2002;22(4): 295–304. https://doi.org/10.1016/S0961-9534(02)00007-7

35. Weidener D., LeitnerW., De Maria P.D., Klose H., Grande P.M. Lignocellulose fractionation using recyclable phosphoric acid: Lignin, cellulose and furfural production. ChemSusChem. 2020;14(3):909–916. https://doi.org/10.1002/cssc.202002383

36. Sanchez V., Dafinov A., Salagre P., Llorca J., Cesteros Y. Microwave-assisted furfural production using hectorites and fluorohectorites as catalysts. Catalysts. 2019;9(9):706. https://doi.org/10.3390/catal9090706

37. Fan B., Kong L., He Y. Highly efficient production of furfural from corncob by barley hull biochar-based solid acid in cyclopentyl methyl ether–water system. Catalysts. 2024;14(9):583. https://doi.org/10.3390/catal14090583

38. Bao Y., Du Z., Liu X., et al. Furfural production from lignocellulosic biomass: one-step and two-step strategies and techno-economic evaluation. Green Chem. 2024;26(11): 6318–6338. https://doi.org/10.1039/D4GC00883A

39. Zhao Y., Lu K., Xu H., Zhu L., Wang S. A critical review of recent advances in the production of furfural and 5-hydroxymethylfurfural from lignocellulosic biomass through homogeneous catalytic hydrothermal conversion. Renew. Sustain. Energy Rev. 2021;139:110706. https://doi.org/10.1016/j.rser.2021.110706

40. Zhang T., Li W., Xiao H., Jin Y., Wu S. Recent progress in direct production of furfural from lignocellulosic residues and hemicellulose. Bioresour. Technol. 2022;354:127126. https://doi.org/10.1016/j.biortech.2022.127126

41. Yong K.J., Wu T.Y., Lee C.B.T.L., et al. Furfural production from biomass residues: Current technologies, challenges and future prospects. Biomass and Bioenergy. 2022;161:106458. https://doi.org/10.1016/j.biombioe.2022.106458

42. MuryantoM., SudiyaniY., HarahapA.F.P., GozanM. Furfural and derivatives from bagasse and corncob. In: Abd-Aziz S., Gozan M., Ibrahim M.F., Phang L.-Y. (Eds.). Chemical Substitutes from Agricultural and Industrial By‐Products: Bioconversion, Bioprocessing, and Biorefining. 2023. Ch. 14. P. 279–300. https://doi.org/10.1002/9783527841141.ch14

43. Lee C.B.T.L. and Wu T.Y. A review on solvent systems for furfural production from lignocellulosic biomass. Renew. Sustain. Energy Rev. 2020;137:110172. https://doi.org/10.1016/j.rser.2020.110172

44. Zhang X., Zhu P., Li Q., Xia H. Recent advances in the catalytic conversion of biomass to furfural in deep eutectic solvents. Front. Chem. 2022;10:911674. https://doi.org/10.3389/fchem.2022.911674

45. MohamadN., Abd-TalibN., YongT.-L.K. Furfural production from oil palm frond (OPF) under subcritical ethanol conditions. Mater. Today Proc. 2020;31(Part 1):116–121. https://doi.org/10.1016/j.matpr.2020.01.256

46. Raman J.K. and Gnansounou E. Furfural production from empty fruit bunch–A biorefinery approach. Ind. Crops Prod. 2015;69:371–377. https://doi.org/10.1016/j.indcrop.2015.02.063

47. Qatrunnada A., Muryanto M., Darmawan M.A., Gozan M. Optimization of furfural liquid-liquid extraction from oil palm empty fruit bunch hydrolysate solution with solvent variations. AIP Conf. Proc. 2024;3080(1):050002. (The 15th Asian Congress on Biotechnology in conjunction with the 7th International Symposium on Biomedical Engineering (ACB-ISBE 2022)). https://doi.org/10.1063/5.0198973

48. Othman N.E.A., Abd Aziz A., Wan Hassan W.H., Jailani N.F., Abd Hamid F., Abdul Wahab N. Production of furfural from oil palm fibres. J. Oil Palm Res. 2020;33(3): 473–481. Available: http://jopr.mpob.gov.my/. Accessed January 5, 2025.

49. Tareen A.K., Punsuvon V., Parakulsuksatid P. Conversion of steam exploded hydrolyzate of oil palm trunk to furfural by using sulfuric acid , solid acid, and base catalysts in one pot. Energy Sources, PartA: Recover. Util. Environ. Eff. 2020;46(1): 6126-6137. https://doi.org/10.1080/15567036.2020.1741733

50. García-Domínguez M.T., García-Domínguez J.C., FeriaM.J., Gómez-LozanoD.M., LópezF., DíazM.J. Furfural production from Eucalyptus globulus: Optimizing by using neural fuzzy models. Chem. Eng. J. 2013;221:185–192. https://doi.org/10.1016/j.cej.2013.01.099

51. López F., et al. Optimization of furfural production by acid hydrolysis of Eucalyptus globulus in two stages. Chem. Eng. J. 2014;240:195–201. https://doi.org/10.1016/j.cej.2013.11.073

52. Padilla-Rascón C., Romero-García J.M., Ruiz E., Romero I., Castro E. Microwave-assisted production of furfural from the hemicellulosic fraction of olive stones. Process Saf. Environ. Prot. 2021;152:630–640. https://doi.org/10.1016/j.psep.2021.06.035

53. Rivas S., Vila C., Santos V., Parajó J.C. Furfural production from birch hemicelluloses by two-step processing: a potential technology for biorefineries. Holzforschung. 2016;70(10): 901–910. https://doi.org/10.1515/hf-2015-0255

54. Brazdausks P., Puke M., Vedernikovs N., Irçna K. The effect of catalyst amount on the production of furfural and acetic acid from birch wood in a biomass pretreatment process. Baltic Forestry. 2014;20(1):106–114. Available: https://ortus.rtu.lv/science/en/publications/18956. Accessed January 5, 2025.

55. Brazdausks P., Vedernikovs N., Puke M., Kruma I. Effect of the acid hydrolysis temperature on the conversion of birch wood hemicelluloses into furfural. Key Eng. Mater. 2014;604: 245–248. https://doi.org/10.4028/www.scientific.net/KEM.604.245

56. García M.T., Zamudio M.A.M., Loaiza J.M., et al. Characterization and use of southern cattail for biorefiningbased production of furfural. Biomass Convers. Bioref. 2019;9:333–339. https://doi.org/10.1007/s13399-018-0355-1

57. Kazemi M., Zand-Monfared M.R. Furfural production from pisthachio green hulls as agricultural residues. J. Appl. Chem. Res. 2010;3(12):19–24. Available: http://www.sid.ir/. URL: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a614365d06f93de64cb2c2345fe3855f7824b198. Accessed January 5, 2025.

58. Yue Z., Sun L.-L., Sun S.-N., Cao X.-F., Wen J.-L., Zhu M.-Q. Structure of corn bran hemicelluloses isolated with aqueous ethanol solutions and their potential to produce furfural. Carbohydr. Polym. 2022;288:119420. https://doi.org/10.1016/j.carbpol.2022.119420

59. Mao L., Zhang L., Gao N., Li A. Seawater based furfural production via corncob hydrolysis catalyzed by FeCl3 in acetic acid steam. Green Chem. 2013;15(3):727–737. https://doi.org/10.1039/C2GC36346A

60. Barbosa B.M., Colodette J.L., Junior D.L., Gomes F.J.B., Martino D.C. Preliminary studies on furfural production from lignocellulosics. J. Wood Chem. Technol. 2014;34(3):37–41. https://doi.org/10.1080/02773813.2013.844167

61. Soludongwe S.M. Co-production of furfural and wood composite products from bio-based processing residues: Thesis for Degree of Master ofAgricultural Sciences. Faculty of AgriSciences, Stellenbosch University. 2020. Available: https://scholar.sun.ac.za. Accessed January 5, 2025.

62. Bariani M., Boix E., Cassella F., Cabrera M.N. Furfural production from rice husks within a biorefinery framework. Biomass Convers. Bioref. 2021;11:781–794. https://doi.org/10.1007/s13399-020-00810-1

63. Sashikala M., Ong H.K. Synthesis and identification of furfural from rice straw. J. Trop. Agric. Food Sci. 2007;35(1):165–172. Available: https://jtafs.mardi.gov.my/ jtafs/35-1/Furfural.pdf. Accessed January 5, 2025.

64. Sashikala M., Ong H.K. Synthesis, identification and evaluation of furfural from rice straw. J. Trop. Agric. Food Sci. 2009;37(1):95–101. Available: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20113329392. Accessed January 5, 2025.

65. Singh A., Das K., Sharmab D.K. Production of xylose, furfural, fermentable sugars and ethanol from agricultural residues. J. Chem. Technol. Biotechnol. 1984;34(2):51–61. https://doi.org/10.1002/jctb.5040340203

66. Uppal S.K., Gupta R., Dhillon R.S., Bhatia S. Potential of sugarcane bagasse for production of furfural and its derivatives. Sugar Tech. 2009;10(4):298–301. http://doi.org/10.1007/s12355-008-0053-6

67. Uppal S.K., Kaur R. Hemicellulosic furfural production from sugarcane bagasse using different acids. Sugar Tech. 2011;13(2):166–169. https://doi.org/10.1007/s12355-011-0081-5

68. Wang Q., Zhuang X., Wang W., Tan X., Yu Q., Qi W. Rapid and simultaneous production of furfural and celluloserich residue from sugarcane bagasse using a pressurized phosphoric acid-acetone-water system. Chem. Eng. J. 2017;334:698–706. https://doi.org/10.1016/j.cej.2017.10.089

69. Gomes G.R., Scopel E., Breitkreitz M.C., Rezende C.A., Pastre J.C. Valorization of sugarcane bagasse C5-fraction by furfural production mediated by renewable glycine-based ionic liquid. Ind. Crops Prod. 2022;191(Part A):115940. https://doi.org/10.1016/j.indcrop.2022.115940

70. Ji H., Zhu J.Y., Gleisner R. Integrated production of furfural and levulinic acid from corncob in a onepot batch reaction incorporating distillation using step temperature profiling. RSC Adv. 2017:7(73):46208–46214. https://doi.org/10.1039/c7ra08818c

71. Ren J., Wang W., Yan Y., Deng A., Chen Q., Zhao L. Microwave-assisted hydrothermal treatment of corncob using tin(IV) chloride as catalyst for furfural production. Cellulose. 2016;23(3):1649–1661. https://doi.org/10.1007/s10570-016-0898-x

72. Wang Q., et al. Production of furfural with high yields from corncob under extremely low water/solid ratios. Renew. Energy. 2019;144:139–146. https://doi.org/10.1016/j.renene.2018.07.095

73. Bu L., Tang Y., Gao Y., Jian H., Jiang J. Comparative characterization of milled wood lignin from furfural residues and corncob. Chem. Eng. J. 2011;175:176–184. https://doi.org/10.1016/j.cej.2011.09.091

74. Castro G.A.D., Batista R.C., De Sousa R. de C.S., Carneiro A. de C.O., Fernandes S.A. Green synthesis offurfural from xylose and corn cob biomas. React. Chem. Eng. 2023;(8):1969–1980. https://doi.org/10.1039/D3RE00017F

75. Chen Z., Reznicek W.D., Wan C. Aqueous choline chloride: A novel solvent for switchgrass fractionation and subsequent hemicellulose conversion into furfural. ACS Sustain. Chem. Eng. 2018;6(8):6910–6919. https://doi.org/10.1021/acssuschemeng.8b00728

76. Lee C.B.T.L., Wu T.Y., Cheng C.K., Siow L.F., Chew I.M.L. Nonsevere furfural production using ultrasonicated oil palm fronds and aqueous choline chloride-oxalic acid. Ind. Crops Prod. 2021;166:113397. https://doi.org/10.1016/j.indcrop.2021.113397

77. Eifert T., Liauw M.A. Process analytical technology (PAT) applied to biomass valorisation: a kinetic study on the multiphase dehydration of xylose to furfural. React. Chem. Eng. 2016;1(5):521–532. https://doi.org/10.1039/C6RE00082G

78. Scapin E., Rambo M.K.D., Viana G.C.C., et al. Sustainable production of furfural and 5-hidroximetilfurfural from rice husks and soybean peel by using ionic liquid. Food Sci. Technol. 2020;40(Suppl. 1):83–87. https://doi.org/10.1590/fst.04419

79. Lin K.-H., Huang M.-H., Chang A.C.-C. Liquid phase reforming of rice straw for furfural production. Int. J. Hydrogen Energy. 2013;38(35):15794–15800. https://doi.org/10.1016/j.ijhydene.2013.06.088

80. Dussan K., Girisuta B., Haverty D., Leahy J.J., Hayes M.H.B. Kinetics of levulinic acid and furfural production from Miscanthus x giganteus. Bioresour. Technol. 2013;149: 216–224. https://doi.org/10.1016/j.biortech.2013.09.006

81. Al Rashdi S., Al Balushi A., Patil G. Optimized extraction of furfural from omani date palm seeds: A comparative study of soxhlet and distillation techniques. Multidiscip. Sci. J. 2025;7:e2025005. https://doi.org/10.31893/multiscience.2025005

82. Al-Rahbi B.S.N., Dwivedi P.B. Extraction and characterization of furfural from waste Omani date seeds. Green Chem. Technol. Lett. 2016;2(4):219–223. https://doi.org/10.18510/gctl.2016.249

83. Sweygers N., Depuydt D.E.C., Vuure A.W.V., et al. Simultaneous production of 5-hydroxymethylfurfural and furfural from bamboo (Phyllostachys nigra ‘Boryana’) inabiphasic reaction system. Chem. Eng.J. 2020;386:123957. https://doi.org/10.1016/j.cej.2019.123957

84. Xia Q., Peng H., Zhang Y., et al. Microwave assisted furfural production from xylose and bamboo hemicellulose in a biphasic medium. Biomass Convers. Bioref. 2021;13(9): 7895–7907. https://doi.org/10.1007/s13399-021-01870-7

85. Senila L., Miclean M., Senila M., Roman M., Roman C. New analysis method of furfural obtained from wood applying an autohydrolysis pretreatment. Rom. Biotechnol. Lett. 2013;18(1):7947–7955. Available: https://www.biotehgen. eu/RBL/8 Senila.pdf. Accessed January 5, 2025.

86. Gao H., Liu H., Pang B., et al. Production of furfural from waste aqueous hemicellulose solution of hardwood over ZSM-5 zeolite. Bioresour. Technol. 2014;172:453–456. https://doi.org/10.1016/j.biortech.2014.09.026

87. Liu H., Hu H., Jahan M.S., Ni Y. Furfural formation from the pre-hydrolysis liquor of a hardwood kraft-based dissolving pulp production process. Bioresour. Technol. 2013;131: 315–320. https://doi.org/10.1016/j.biortech.2012.12.158

88. Ntimbani R.N., Farzad S., Görgens J.F. Furfural production from sugarcane bagasse along with co-production of ethanol from furfural residues. Biomass Convers. Bioref. 2021;12: 5257–5267. https://doi.org/10.1007/s13399-021-01313-3

89. Rivera Cedillo E.E., González Chávez M.M., Handy B.E., Quintana Olivera M.F., López Mercado J., Cárdenas Galindo M. Acid catalyzed transformation of orange waste into furfural: the effect of pectin degree of esterification. Bioresour. Bioprocess. 2024;11:52. https://doi.org/10.1186/s40643-024-00768-2

90. Sattar M.A., Chakraborty A.K., Al-Reza S.M., Islam S. Extraction and estimation of furfural from decorative plants grown in Bangladesh. Bangladesh J. Sci. Ind. Res. 2007;42(4):495–498. https://doi.org/10.3329/bjsir.v42i4.759

91. Iriany I., Taslim T., Bani O., Pratama A.J. Potential of lime as a green catalyst in the manufacture of furfural from Mikania micrantha. IOPConf. Ser.: Earth Environ. 2021;713(1):012038. http://doi.org/10.1088/1755-1315/713/1/012038

92. Uy J.R., Careo N.D., Llarena D., Barajas J.R. Optimization of furfural extraction from Theobrama cacao wastes using response surface methodology. MATEC Web Conf. (RSCE 2018). 2019;268(4):06010. https://doi.org/10.1051/MATECCONF/201926806010

93. Huang L., Peng H., Xiao Z., et al. Production of furfural and 5-hydroxymethyl furfural from Camellia oleifera fruit shell in [Bmim]HSO4/H2O/1,4-dioxane biphasic medium. Ind. Crops Prod. 2022;184(18):15006. https://doi.org/10.1016/j.indcrop.2022.115006

94. Liu L., Chang H.-M., Jameel H., Park S. Furfural production from biomass pretreatment hydrolysate using vaporreleasing reactor system. Bioresour. Technol. 2018;252: 165–171. https://doi.org/10.1016/j.biortech.2018.01.006

95. Stamigna C., Chiaretti D., Chiaretti E., Prosini P.P. Oil and furfural recovery from Brassica carinata. Biomass and Bioenergy. 2012;39:478–483. https://doi.org/10.1016/j.biombioe.2011.12.024

96. GongL., ZhaJ., PanL., MaC., HeY.-C. Highly efficient conversion of sunflower stalk-hydrolysate to furfural by sunflower stalk residue-derived carbonaceous solid acid in deep eutectic solvent/ organic solvent system. Bioresour. Technol. 2022;351:126945. https://doi.org/10.1016/j.biortech.2022.126945

97. Zha J., Fan B., He J., He Y.-C., Ma C. Valorization of biomass to furfural by chestnut shell-based solid acid in methyl isobutyl ketone–water–sodium chloride system. Appl. Biochem. Biotechnol. 2022;194:2021–2035. https://doi.org/10.1007/s12010-021-03733-3

98. Yue Z., Sun L.-L., Wen J.-L., Yao S.-Q., Sun S.-N., Cao X.-F. Simultaneous production of furfural, lignin and cellulose-rich residue from by ChCl/ 1,2-propanediol/MIBK biphasic system pretreatment. Int. J. Biol. Macromol. 2024;271(Part 1):133522. https://doi.org/10.1016/j.ijbiomac.2024.133522

99. Adebayo A.J., Ogunjobi J.K., Oluwasina O.O., Lajide L. Comparative production and optimisation of furfural and furfuryl alcohol from agricultural wastes. Chem. Africa. 2023;6:2401–2417. https://doi.org/10.1007/s42250-023-00594-7

100. Dutta S., De S., Saha B., Alam I. Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels. Catal. Sci. Technol. 2012;2(10):2025–2036. https://doi.org/10.1039/c2cy20235b

101. Cai C.M., Zhang T., Kumar R., Wyman C.E. Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass. J. Chem. Technol. Biotechnol. 2014;89(1):2–10. https://doi.org/10.1002/jctb.4168

102. Piñeiro-García A., González-Alatorre G., Vega-Díaz S.M., Pérez-Pérez M.C.I., Tristan F., Patiño-Herrera R. Reduced graphene oxide coating with high performance for the solid phase micro extraction of furfural in espresso coffee. J. Food Meas. Charact. 2019;14(4):314–321. https://doi.org/10.1007/s11694-019-00293-3

103. Jung K., You S.K., Moon S., Lee U. Furfural from pine needle extract inhibits the growth of a plant pathogenic fungus, Alternaria mali. Mycobiology. 2018;35(1):39–43. https://doi.org/10.4489/MYCO.2007.35.1.039

104. Zhuang Y., Si Z., Pang S., Wu H., Zhang X., Qin P. Recent progress in pervaporation membranes for furfural recovery: A mini review. J. Clean. Prod. 2023;396:136481. https://doi.org/10.1016/j.jclepro.2023.136481

105. Ambalkar V.U., Talib M.I. Synthesis of furfural from lignocellulosic biomass as agricultural residues: A review. Int. J. Eng. Sci. 2012;1(1):30–36. Available: http://www.theijes.com/papers/v1-i1/G011030036.pdf. Accessed January 5, 2025.

106. Hidajati N. The treatment of the corn-knob as a raw material for making furfural. J. Ilmu Dasar. 2007;8(1):45–53. Available: https://jurnal.unej.ac.id/index.php/JID/article/view/129. Accessed January 5, 2025.

107. Nsubuga H., Basheer C., Al-Muallem H.A.S., Kalanthoden A.N. Isolation, characterization and evaluation of photochemical potential of rice husk-based furfural via continuous flow reactor. J. Environ. Chem. Eng. 2016;4(1): 857–863. https://doi.org/10.1016/j.jece.2015.12.026

108. Li Q., Ma C.-L., Zhang P.-Q., Li Y.-Y., Zhu X., He Y.-C. Effective conversion of sugarcane bagasse to furfural by coconut shell activated carbon-based solid acid for enhancing whole-cell biosynthesis of furfurylamine. Ind. Crop. Prod. 2020;160:113169. https://doi.org/10.1016/j. indcrop.2020.113169

109. Sherif N., Gadalla M., Kamel D. Acid–hydrolysed furfural production from rice straw bio-waste: Process synthesis, simulation, and optimisation. South African J. Chem. Eng. 2021;38:34–40. https://doi.org/10.1016/j.sajce.2021.08.002

110. Contreras-Zarazúa G., Martin-Martin M., SanchezRamirez E., Segovia-Hernandez J.G. Furfural production from agricultural residues using different intensified separation and pretreatment alternatives . Economic and environmental assessment. Chem. Eng. Process. Intensif. 2021;171:108569. https://doi.org/10.1016/j.cep.2021.108569

111. Li X., Liu Q., Luo C., Gu X., Lu L., Lu X. Kinetics of furfural production from corn cob in γ Valerolactone using dilute sulfuric acid as catalyst. ACS Sustain. Chem. Eng. 2017;5(10): 8587–8593. https://doi.org/10.1021/acssuschemeng.7b00950

112. Xiang Z., Runge T. Co-production of feed and furfural from dried distillers’ grains to improve corn ethanol profitability. Ind. Crop. Prod. 2014;55:207–216. https://doi.org/10.1016/j.indcrop.2014.02.025

113. Ye L., Han Y., Wang X., Lu X., Qi X., Yu H. Recent progress in furfural production from hemicellulose and its derivatives: Conversion mechanism, catalytic system, solvent selection. Mol. Catal. 2021;515:111899. https://doi.org/10.1016/j.mcat.2021.111899

114. Cousin E., Namhaed K., Pérès Y., et al. Towards efficient and greener processes for furfural production from biomass: A review of the recent trends. Sci. Total Environ. 2022;847: 157599. https://doi.org/10.1016/j.scitotenv.2022.157599

115. Iroha N.B., Akaranta O., James A.O. Red onion skin extractfurfural resin as corrosion inhibitor for aluminium in acid medium. Der Chem. Sin. 2012;3(4):995–1001. Available: http://www.pelagiaresearchlibrary.com/der-chemica-sinica/vol3-iss4/DCS-2012-3-4-995-1001.pdf. Accessed January 5, 2025.

116. Nie Y., Hou Q., Li W., Bai C., Bai X., Ju M. Efficient synthesis of furfural from biomass using SnCl4 as catalyst in ionic liquid. Molecules. 2019;24(3):594. https://doi.org/10.3390/molecules24030594

117. LaForge F.B. The production of furfural by the action of superheated water on aqueous corncob extract. J. Ind. Eng. Chem. 2000;13(11):1024–1025. https://doi.org/10.1021/ie50143a029

118. Li H., Dai Q., Ren J., et al. Effect of structural characteristics of corncob hemicelluloses fractionated by graded ethanol precipitation on furfural production. Carbohydr. Polym. 2016;136:203–209. https://doi.org/10.1016/j.carbpol.2015.09.045

119. Edumujeze D., Fournier-Salaün M.-C., Leveneur S. Production of furfural: From kinetics to process assessment. Fuel. 2025;381(Part B):133423. https://doi.org/10.1016/j.fuel.2024.133423

120. MazarA., Jemaa N., Al DajaniW.W., MarinovaM., PerrierM. Furfural production from a pre-hydrolysate generated using aspen and maple chips. Biomass and Bioenergy. 2017;104: 8–16. https://doi.org/10.1016/j.biombioe.2017.05.016

121. Noda T., Takahata Y., Sato T. Sugar composition of cell wall material from sweet potatoes differing in stages of development, tissue zone and variety. Oyo Toshitsu Kagaku. 1994;41(3):311–316. Available: https://www.jstage.jst.go.jp/article/jag1994/41/3/41_3_311/_pdf. Accessed January 5, 2025.

122. Dias A.S., Lima S., Pillinger M., Valente A.A. Furfural and furfural-based industrial chemicals. In: Pignataro B. (Ed.). Ideas in Chemistry and Molecular Sciences: Advances in Synthetic Chemistry. Part III. Chemical Reactions, Sustainable Processes, and Environment. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2010. Ch. 8. P. 165–185. https://doi.org/10.1002/9783527630554.ch8

123. Xu W., Zhang S., Lu J., Cai Q. Furfural production from corncobs using Thiourea as additive. Environ. Prog. Sustain. Energy. 2017;36(3):690–695. https://doi.org/10.1002/ep.12489

124. Jorqueira D.S.S., de Lima L.F., Maya S.F., et al. Critical review of furfural and furfuryl alcohol production: Past, present, and future on heterogeneous catalysis. Appl. Catal. A: Gen. 2023;665:119360. https://doi.org/10.1016/j.apcata.2023.119360


Review

For citations:


Abubakar A., Umar I., Akintunde A., Aliyu M., Al-Hedrewy M., Raheja U. Dichloromethane solvent for furfural recovery from potato peels: Thermodynamic and kinetic investigations. Fine Chemical Technologies. 2025;20(5):454-473. https://doi.org/10.32362/2410-6593-2025-20-5-454-473. EDN: NYBHED

Views: 11


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)