Comparative analysis of liquid mixture separation flowsheets
https://doi.org/10.32362/2410-6593-2025-20-5-407-429
EDN: AEQBMZ
Abstract
Objectives. When developing separation flowsheets for liquid mixtures, preference is often given to a specific process or flowsheet. Although alternative separation variants are sometimes considered, these tend to be based on a single-phase process, usually distillation. And while review papers on the specifics of implementing a particular separation technique exist, these mainly focus on the specific process of extractive distillation, combination of distillation and splitting processes, and extraction. Moreover, studies comparing the separation flowsheets of mixtures of different physicochemical nature based on different processes and special methods are fragmentary. This study presents a comparative analysis of the processes and methods of liquid mixtures separation based on a critical review of the literature and the authors’ own research results.
Methods. The study is based on the critical analysis of literature and mathematical modeling of phase equilibria using local composition equations via freely distributed software packages.
Results. Specific liquid mixture separation methods, including combining various processes in one flowsheet (including hybrid technologies), are compared in terms of their advantages and disadvantages.
Conclusions. Promising areas of further research in the field of synthesis of organic mixtures separation flowsheets through the use of various separation processes and methods are identified. The effectiveness of the various processes (extraction, splitting, special distillation techniques) is estimated at different stages of different number of components mixtures separation. A comparative analysis of extractive and heteroazeotropic distillation processes when separating mixtures of different initial composition highlights the areas of energy advantage of each process. The effectiveness of the flowsheets is estimated by combining extraction with other processes, depending on the stage of extractant regeneration.
Keywords
About the Authors
A. V. FrolkovaRussian Federation
Anastasiya V. Frolkova, Dr.Sci. (Eng.), Professor, Department of Chemistry and Technology of Basic Organic Synthesis
78, Vernadskogo pr., Moscow, 119454
Scopus Author ID 12782832700, ResearcherID N-4517-2014
A. N. Novruzova
Russian Federation
Albina N. Novruzova, Postgraduate Student, Department of Chemistry and Technology of Basic Organic Synthesis
78, Vernadskogo pr., Moscow, 119454
References
1. Timofeev V.S., Serafimov L.A., Timoshenko A.V. Printsipy tekhnologii osnovnogo organicheskogo i neftekhimicheskogo sinteza (The Principles of the Technology of Basic Organic and Petrochemical Synthesis). Moscow: Vysshaya shkola; 2010. 408 p. (in Russ.). ISBN 978-5-06-006067-6
2. Zharov V.T., Serafimov L.A. Fiziko-khimicheskie osnovy distillyatsii i rektifikatsii (Physicoсhemical Principles of Distillation and Rectification). Leningrad: Khimiya; 1975. 240 p. (in Russ.).
3. Frolkova A.K. Razdelenie azeotropnykh smesei. Fizikokhimicheskie osnovy i tekhnologicheskie priemy (Separation of Azeotropic Mixtures. Physicoсhemical Fundamentals and Technological Methods). Moscow: VLADOS; 2010. 192 p. (in Russ.). ISBN 978-5-691-01743-8
4. Zhigang L., Chengyue L., Biaohua C. Extractive Distillation: A Review. Sep. Purif. Rev. 2003;32(2):121–213. https://doi.org/10.1081/SPM-120026627
5. Gerbaud V., Rodriguez-donis I., Hegely L., Lang P., Denes F., You X. Review of Extractive Distillation. Process design, operation, optimization and control. Chem. Eng. Res. Des. 2019;141:229–271. https://doi.org/10.1016/j.cherd.2018.09.020
6. Hilal N., Yousef G., Langston P. The reduction of extractive agent in extractive distillation and auto-extractive distillation. Chemical Engineering and Processing: Process Intensification. 2002;41(8):673–679. https://doi.org/10.1016/S0255-2701(01)00187-8
7. Anokhina E.A. Energy saving in extractive distillation. Fine Chem. Technol. 2013;8(5):3–19 (in Russ.).
8. Raeva V.M., Sazonova A.Yu., Sebyakin A.Yu., Kudryavtseva D.Yu. Criterion of choosing potential entrainers for extractive distillation. Fine Chem. Technol. 2011;6(4): 20–27 (in Russ.).
9. Frolkova A.V., Merkulyeva A.D., Gaganov I.S. Synthesis of flowsheets for separation of multiphase mixtures: state of the art. Fine Chem. Technol. 2018;13(3):5–22 (in Russ.). https://doi.org/10.32362/24106593-2018-13-3-5-22
10. Frolkova A.V., Frolkova A.K., Podtiagina A.V., et al. Energy savings in flowsheets based on combination of distillation and splitting processes. Theor. Found. Chem. Eng. 2018;52(5): 771–778. https://doi.org/10.1134/S0040579518050329 [Original Russian Text: Frolkova A.V., Frolkova A.K., Podtiagina A.V., Spiriakova V.V. Energy savings in flowsheets based on combination of distillation and splitting processes. Teoreticheskie osnovy khimicheskoi tekhnologii. 2018;52(5): 489–496 (in Russ.). https://doi.org/10.1134/S0040357118050032 ]
11. Sosa J.E., Araújo J.M.M., Amado-González E., Pereiro A.B. Separation of azeotropic mixtures using protic ionic liquids as extraction solvents. J. Mol. Liquids. 2019;297:111733. https://doi.org/10.1016/j.molliq.2019.111733
12. Patel K., Panchal N., Ingle Dr.Pr. Review of Extraction Techniques Extraction Methods: Microwave, Ultrasonic, Pressurized Fluid, Soxhlet Extraction, Etc. International Journal of Advanced Research in Chemical Science (IJARCS). 2018;6(3):6–21. http://doi.org/10.20431/2349-0403.0603002
13. Silvestre Cr.I.C., Santos J.L.M., Lima J.L.F.C., Zagatto E.A.G. Liquid–liquid extraction in flow analysis: A critical review. Anal. Chim. Acta. 2009;652(1–2):54–65. https://doi.org/10.1016/j.aca.2009.05.042
14. Nosov G.A., Mikhailov M.V., Absattarov A.I. Separation of mixtures by combining rectification and fractional crystallization processes. Fine Chem. Technol. 2017;12(3):44–51 (in Russ.). https://doi.org/10.32362/2410-6593-2017-12-3-44-51
15. Berry D.A, Ng K.M. Synthesis of crystallization-distillation hybrid separation processes. AIChE J. 1997;43(7):1751–1762. https://doi.org/10.1002/aic.690430712
16. Cisternas L.A., Vasquez C.M., Swaney R.E. On the Design of Crystallization-Based Separation Processes: Review and Extension. AIChE J. 2006;52(5):1754–1769. https://doi.org/10.1002/aic.10768
17. Serafimov L.A. State of the art in the thermodynamic and topological analysis of phase diagrams. Theor. Found. Chem. Eng. 2009;43(3):268–278. https://doi.org/10.1134/S0040579509030051 [Original Russian Text: Serafimov L.A. State of the art in the thermodynamic and topological analysis of phase diagrams. Teoreticheskie osnovy khimicheskoi tekhnologii. 2009;43(3):284–294 (in Russ.).]
18. Kiss А.А., Suszwalak D. J-.P.C. Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns. Sep. Purif. Technol. 2012;86:70–78. https://doi.org/10.1016/j.seppur.2011.10.022
19. Frolkova A.V., Frolkova A.K., Gaganov I.S. Comparison of Extractive and Heteroazeotropic Distillation of HighBoiling Aqueous Mixtures. ChemEngineering 2022;6(5):83. https://doi.org/10.3390/chemengineering6050083
20. Chen Y.-Ch., Yu B.-Y., Hsu Ch.-Ch., Chien I-L. Comparison of heteroazeotropic and extractive distillation for the dehydration of propylene glycol methyl ether. Chem. Eng. Res. Des. 2016;111:184–195. https://doi.org/10.1016/j.cherd.2016.05.003
21. Zhao L., Lyu X., Wang W., Shan J., Qiu T. Comparison of heterogeneous azeotropic distillation and extractive distillation methods for ternary azeotrope ethanol/toluene/ water separation. Comput. Chem. Eng. 2017;100:27–37 https://doi.org/10.1016/j.compchemeng.2017.02.007
22. Frolkova A.V., Frolkova A.K., Gaganov I.S. Combination special techniques in development of separation schemes for mixture of methanol + water + methyl methacrylate. Khimicheskaya Tekhnologiya. 2023;24(8):314–320 (in Russ.). https://doi.org/10.31044/1684-5811-2023-24-8-314-320
23. Serafimov L.A. The azeotropic rule and the classification of multicomponent mixtures: VII. Diagrams for ternary systems mixtures. Russ. J. Phys. Chem. 1970;44(4):567–571. [Original Russian Text: Serafimov L.A. The azeotropic rule and the classification of multicomponent mixtures: VII. Diagrams for ternary systems mixtures. Zhurnal fizicheskoi khimii. 1970;44(4):1021–1027 (in Russ.).]
24. Klinov A.V., Fazlyev A.R., Khairullina A.R., Alekseev K.A., Latypov D.R. Extractive rectification of ethanol-water mixture using ethylene glycol. Vestnik tekhnologicheskogo universiteta = Herald of Technological University. 2023;26(1):44–47 (in Russ.). https://doi.org/10.55421/1998-7072_2023_26_1_44
25. Frolkova A.K., Frolkova A.V., Raeva V.M., Zhuchkov V.I. Features of distillation separation of multicomponent mixtures. Fine Chem. Technol. 2022;17(3):87–106. https://doi.org/10.32362/2410-6593-2022-17-2-87-106
26. Frolkova A., Frolkova A., Gaganov I. Extractive and AutoExtractive Distillation of Azeotropic Mixtures. Chem. Eng. Technol. 2021;44(8):1397–1402. https://doi.org/10.1002/ceat.202100024
27. Luo H., Liang K., Li W., Ming Xia Y., Xu C. Comparison of PressureSwing Distillation and Extractive Distillation Methods for Isopropyl Alcohol/Diisopropyl Ether Separation. Ind. Eng. Chem. Res. 2014;53(39):15167–15182. https://doi.org/10.1021/ie502735g
28. Lladosa E., Montón J.B., Burguet M. Separation of di-n-propyl ether and n-propyl alcohol by extractive distillation and pressure-swing distillation: Computer simulation and economic optimization. Chem. Eng. Process.: Process Intensif. 2011;50(11–12):1266–1274. https://doi.org/10.1016/j.cep.2011.07.010
29. Wang X., Xie L., Tian P., Tian G. Design and control of extractive dividing wall column and pressure-swing distillation for separating azeotropic mixture of acetonitrile/N-propanol. Chem. Eng. Process.: Process Intensif. 2016;110:172–187. https://doi.org/10.1016/j.cep.2016.10.009
30. Ghuge Pr.D., Mali N.A., Joshi S.S. Comparative Analysis of Extractive and Pressure Swing Distillation for Separation of THF-Water Separation. Comput. Chem. Eng. 2017;103: 188–200. http://doi.org/10.1016/j.compchemeng.2017.03.019
31. MuñozR., Montón J.B., Burguet M.C., de laTorre J. Separation of isobutyl alcohol and isobutyl acetate by extractive distillation and pressure-swing distillation: Simulation and optimization. Sep. Purif. Technol. 2006;50(2):175–183. https://doi.org/10.1016/j.seppur.2005.11.022
32. CaoY., Hu J., JiaH., BuG., ZhuZh., WangY. Comparison of pressureswing distillation and extractive distillation with varied-diameter column in economics and dynamic control. J. Process Control. 2017;49:9–25. https://doi.org/10.1016/j.jprocont.2016.11.005
33. Luyben W.L. Comparison of pressure-swing and extractivedistillation methods for methanol-recovery systems in the TAME reactive-distillation process. Ind. Eng. Chem. Res. 2005;44(15):5715–5725. https://doi.org/10.1021/ie058006q
34. Modla G., Lang P. Removal and Recovery of Organic Solvents from Aqueous Waste Mixtures by Extractive and Pressure Swing Distillation. Ind. Eng. Chem. Res. 2012;51(35): 11473–11481. https://doi.org/10.1021/ie300331d
35. Luyben W.L. Comparison of extractive distillation and pressure swing distillation for acetone-methanol separation. Ind. Eng. Chem. Res. 2008;47(8):2696−2707. https://doi.org/10.1021/ie701695u
36. Luyben W.L. Comparison of extractive distillation and pressure-swing distillation for acetone/chloroform separation. Comput. Chem. Eng. 2013;50:1–7. https://doi.org/10.1016/j.compchemeng.2012.10.014
37. Hosgor E., Kucuk T., Oksal I.N., Kaymak D.B. Design and control of distillation processes for methanol–chloroform separation. Comput. Chem. Eng. 2014;67:166–177. https://doi.org/10.1016/j.compchemeng.2014.03.026
38. Frolkova A.V., Shashkova Y.I., Frolkova A.K., Mayevskiy M.A. Comparison of alternative methods for methyl acetate + methanol + acetic acid + acetic anhydride mixture separation. Fine Chem. Technol. 2019;14(5):51–60. https://doi.org/10.32362/2410-6593-2019-14-5-51-60
39. Qin Y., Zhuang Y., Wang Ch., Dong Y., Zhang L., Liu L., Du J. Comparison of Pressure-Swing Distillation and Extractive Distillation for the Separation of the Non-Pressure-Sensitive Azeotropes. In: Proceedings of the 24th Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction. 2021. URL: Comparison of Pressure-Swing Distillation and Extractive Distillation for the Separation of the Non-Pressure-Sensitive Azeotropes. Accessed September 08, 2025.
40. Raeva V.M., Kapranova A.S. Comparison efficiency of extractive agents at the separation of mixture acetone– methanol. Khimicheskaya promyshlennost’ segodnya = Chemical Industry Developments. 2015;3:33–46 (in Russ.).
41. Guang C., Shi X., Zhang Z., Wang C., Wang C., Gao J. Comparison of heterogeneous azeotropic and pressure-swing distillations for separating the diisopropylether/isopropanol/ water mixtures. Chem. Eng. Res. Design. 2019;143:249–260. https://doi.org/10.1016/j.cherd.2019.01.021
42. Cui Y., Shi X., Guang C., Zhang Z., Wang C., Wang C. Comparison of pressure-swing distillation and heterogeneous azeotropic distillation for recovering benzene and isopropanol from wastewater. Process Saf. Environ. Protection. 2018;122:1–12. https://doi.org/10.1016/j.psep.2018.11.017
43. Tripodi A., Compagnoni M., Ramis G., Rossetti I. Pressureswing or extraction-distillation for the recovery of pure acetonitrile from ethanol ammoxidation process: A comparison of efficiency and cost. Chem. Eng. Res. Design. 2017;127: 92–102. https://doi.org/10.1016/j.cherd.2017.09.018
44. Zhu Z., Wang Y., Hu J., Qi X., Wang Y. Extractive distillation process combined with decanter for separating ternary azeotropic mixture of toluene-methanol-water. Chem. Eng. Trans. 2017;61:763–768. https://doi.org/10.3303/CET1761125
45. Gaganov I.S., Belim S.S., Frolkova A.V., Frolkova A.K. Development of Flowsheet of Separation of a Phenol Production Mixture Based on the Analysis of Phase Equilibrium Diagrams. Theor. Found. Chem. Eng. 2023;57(1):35–44. https://doi.org/10.1134/S0040579523010049 [Original Russian Text: Gaganov I.S., Belim S.S., Frolkova A.V., Frolkova A.K. Development of Flowsheet of Separation of a Phenol Production Mixture Based on the Analysis of Phase Equilibrium Diagrams. Teoreticheskie osnovy khimicheskoi tekhnologii. 2023;57(1):38–47 (in Russ.). https://doi.org/10.31857/S0040357123010049 ]
46. Novruzova A.N., Frolkova A.V. Сomparison of technological schemes of separation of the mixture acetonitrile – water, based on different mass transfer processes. In: Chemistry and Chemical Technology: Achievements and Prospects: Thesis Collection I of the 7th International All-Russian Сonference. 2024. P. 0234.1-0234.6 (in Russ.).
47. Yu B.-Y., Huang R., Zhong X.-Y., Lee M.-J., Chien I.-L. Energy-Efficient Extraction-Distillation Process for Separating Diluted Acetonitrile-Water Mixture: Rigorous Design with Experimental Verification from Ternary LiquidLiquid Equilibrium Data. Ind. Eng. Chem. Res. 2017;56(51): 15112–15121. https://doi.org/10.1021/acs.iecr.7b04408
48. Mahdi T., Ahmad A. Nasef M.M., Ripin A. State-of-the-Art Technologies for Separation of Azeotropic Mixtures. Sep. Purif. Rev. 2015;44(4):308–330. https://doi.org/10.1080/154 22119.2014.963607
49. Daviou M.C., Hoch P.M., Eliceche A.M. Design of membrane modules used in hybrid distillation/pervaporation systems. Ind. Eng. Chem. Res. 2004;43(13):3403–3412. https://doi.org/10.1021/ie034259c
50. Naidu Y., Malik R.K. A generalized methodology for optimal configurations of hybrid distillation–pervaporation processes. Chem. Eng. Res. Design. 2011;89(8):1348–1361. https://doi.org/10.1016/j.cherd.2011.02.025
51. Kookos I.K. Optimal design of membrane/distillation column hybrid processes. Ind. Eng. Chem. Res. 2003;42(8): 1731–1738. https://doi.org/10.1021/ie020616s
52. Hoof V.V., Van den Abeele L., Buekenhoudt A., Dotremont C., Leysen R. Economic comparison between azeotropic distillation and different hybrid systems combining distillation with pervaporation for the dehydration of isopropanol. Sep. Purif. Technol. 2004;37(1):33–49. https://doi.org/10.1016/j.seppur.2003.08.003
53. Nangare D.M., Suseeladevi M. Hybrid pervaporation/ distillation process for ethanol – water separation effect of distillation column side stream. Asian J. Sci. Technol. 2017;8(11):6522–6525.
54. Koczka K., Mizsey P., Fonyo Zs. Rigorous modelling and optimization of hybrid separation processes based on pervaporation. Open Chemistry. 2005;5(4):1124–1147. https://doi.org/10.2478/s11532-007-0050-8
55. Han G.L., Zhang Q., Zhong J., Shao H. Separation of Dimethylformamide/H2O Mixtures Using Pervaporation-distillation Hybrid Process. Adv. Mater. Res. 2011;233–235:866–869. https://doi.org/10.4028/www.scientific.net/AMR.233-235.866
56. Hassankhan B., Raisi A. Separation of isobutanol/water mixtures by hybrid distillationpervaporation process: Modeling, simulation and economic comparison. Chem. Eng. Process.: Process Intensif. 2020;155:108071. https://doi.org/10.1016/j.cep.2020.108071
57. Zong Ch., Guo Q., Shen B., Yang X., Zhou H., Jin W. HeatIntegrated Pervaporation−Distillation Hybrid System for the Separation of Methyl Acetate−Methanol Azeotropes. Ind, Eng. Chem. Res. 2021;60(28):10327–10337. https://doi.org/10.1021/acs.iecr.1c01513
58. Penkova A.V., Polotskaya G.A., Toikka A.M. Separation of acetic acid–methanol–methyl acetate–water reactive mixture. Chem. Eng. Sci. 2013;101:586–592. https://doi.org/10.1016/j.ces.2013.05.055
59. Toikka A.M., Samarov A.A., Toikka M.A. Phase and chemical equilibria in multicomponent fluid systems with a chemical reaction. Russ. Chem. Rew. 2015;84(4):378–392. https://doi.org/10.1070/RCR4515 [Original Russian Text: ToikkaA.M., SamarovA.A., ToikkaM.A. Phase and chemical equilibria in multicomponent fluid systems with a chemical reaction. Uspekhi khimii. 2015;84(4):378–392 (in Russ.). https://doi.org/10.1070/RCR4515 ]
60. Wang Y., Zhang Z., Zhang H., Zhang Q. Control of heat integrated pressure-swing-distillation process for separating azeotropic mixture of tetrahydrofuran and methanol. Ind. Eng. Chem. Res. 2015;54(5):1646–1655. https://doi.org/10.1021/ie505024q
61. Zhu Z., Wang L., Ma Y., Wang W., Wang Y. Separating an azeotropic mixture of toluene and ethanol via heat integration pressure swing distillation. Comput. Chem. Eng. 2015;76: 137–149. https://doi.org/10.1016/j.compchemeng.2015.02.016
62. Anokhina E.A., Timoshenko A.V. Synthesis of the thermally coupled distillation sequences. Fine Chem. Technol. 2017;12(6):46–70 (in Russ.). https://doi.org/10.32362/2410- 6593-2017-12-6-46-70
63. Anokhina E.A., Timoshenko A.V. Effect of the Side-Stream Location and the Side-Stream Value on the Optimal Entrainer Flowrate in Thermally Coupled Extractive Distillation Columns. Theor. Found. Chem. Eng. 2023;57(2):165–175. https://doi.org/10.1134/s0040579523010013 [Original Russian Text: Anokhina E.A., Timoshenko A.V. Effect of the Side-Stream Location and the Side-Stream Value on the Optimal Entrainer Flowrate in Thermally Coupled Extractive Distillation Columns. Teoreticheskie osnovy khimicheskoi tekhnologii. 2023;57(2)165–175 (in Russ.). https://doi.org/10.1134/S0040579523010013 ]
64. YuB., Wang Q., XuC. Design and control of distillation system for methylal/methanol separation. Part 2: pressure swing distillation with full heat integration. Ind. Eng. Chem. Res. 2012;51(3):1293–1310. https://doi.org/10.1021/ie201949q
65. Shirsat S.P. Modeling, simulation and control of an internally heat integrated pressure swing distillation process for bioethanol separation. Comput. Chem. Eng. 2013;53:201–202. https://doi.org/10.1016/j.compchemeng.2013.01.009
66. Liu G., Chen Z., Huang K., Shi Z., Chen H., Wang S. Studies of the externally heat-integrated double distillation columns (EHIDDiC). Asia-Pacific J. Chem. Eng. 2011;6(3):327–337. https://doi.org/10.1002/apj.566
67. Huang K., Liu W., Ma J., Wang S. Externally heat-integrated double distillation column (EHIDDiC): basic concept and general characteristics. Ind. Eng. Chem. Res. 2010;49(3): 1333–1350. https://doi.org/10.1021/ie901307j
68. Rudakov D.G., Klauzner P.S., Ramochnikov D.A., Anokhina E.A., Timoshenko A.V. Efficiency of Using Heat Pumps in the Extractive Rectification of an Allyl Alcohol– Allyl Acetate Mixture Depending on the Composition of the Feed. Part 2. Application of Heat Pumps in Column Complexes with Partially Coupled Heat and Material Flows. Theor. Found. Chem. Eng. 2024;58(1):192–201. https://doi.org/10.1134/S0040579524700337
69. KlauznerP.S., RudakovD.G., AnokhinaE.A., TimoshenkoA.V. Application Regularities of Heat Pumps in Extractive Distillation. Theor. Found. Chem. Eng. 2022;56(3):308–320. https://doi.org/10.1134/S0040579522030071 [Original Russian Text: Klauzner P.S., Rudakov D.G., Anokhina E.A., Timoshenko A.V. Application Regularities of Heat Pumps in Extractive Distillation. Teoreticheskie osnovy khimicheskoi tekhnologii. 2022;56(3):313–325 (in Russ.). https://doi.org/10.31857/S0040357122030071 ]
70. Wang Y., Zhang Z., Xu D., Liu W., Zhu Z. Design and control of pressure-swing distillation for azeotropes with different types of boiling behavior at different pressures. J. Process. Control. 2016;42:59–76. https://doi.org/10.1016/j.jprocont.2016.04.006
71. Luyben W.L. Control comparison of conventional and thermally coupled ternary extractive distillation processes. Chem. Eng. Res. Des. 2016;106:253–262. https://doi.org/10.1016/j.cherd.2015.11.021
72. Gil I.D., Gómez J.M., Rodríguez G. Control of an extractive distillation process to dehydrate ethanol using glycerol as entrainer. Comput. Chem. Eng. 2012;39:129–142. https://doi.org/10.1016/j.compchemeng.2012.01.006
73. Qin J., Ye Q., Xiong X., Li N. Control of benzene-cyclohexane separation system via extractive distillation using sulfolane as entrainer. Ind. Eng. Chem. Res. 2013;52(31):10754–10766. https://doi.org/10.1021/ie401101c
74. Wei H.-M., Wang F., Zhang J.-L., Liao B., Zhao N., Xiao F., Wei W., Sun Y. Design and control of dimethyl carbonate-methanol separation via pressure-swing distillation. Ind. Eng. Chem. Res. 2013;52(33):11463–11478. https://doi.org/10.1021/ie3034976
75. Fan Z., Zhang X., Cai W., Wang F. Design and control of extraction distillation for dehydration of tetrahydrofuran. Chem. Eng. Technol. 2013;36(5):829–839. https://doi.org/10.1002/ceat.201200611
Review
For citations:
Frolkova A.V., Novruzova A.N. Comparative analysis of liquid mixture separation flowsheets. Fine Chemical Technologies. 2025;20(5):407-429. https://doi.org/10.32362/2410-6593-2025-20-5-407-429. EDN: AEQBMZ






















