Rare-earth element complexes with complexones, heparin, and antibiotics in biosystems for use as electrode-active materials in membrane ion-selective electrodes
https://doi.org/10.32362/2410-6593-2025-20-4-372-381
EDN: QNZATD
Abstract
Objectives. The creation of ion-selective electrodes (ISEs) based on rare-earth element (REE) complexes in environmentally friendly biosystems is of interest due to the increased relevance of environmental management. The work sets out to study the possibility of using REE complexes for creating ISEs sensitive to cefazolin. The created potentiometric sensors can be used for rapid determination of antibiotics in microvolume samples.
Methods. The work presents the synthesis of electrode-active REE complexes with cefazolin. In order to identify the obtained electrodeactive substances and investigate their physicochemical characteristics, the following methods were used: elemental analysis with a scanning electron microscope, infrared spectroscopy, simultaneous thermal analysis, and potentiometry.
Results. Previously unstudied complexes of cerium and lutetium with cefazolin were obtained for use as an electrode-active substance for creating ISEs. The physicochemical characteristics of the complexes were investigated. For the created ISEs, the following characteristics were studied: performance characteristics, the dependence of electrode potentials on the analyte concentration, stability, and the response time of the electrode placed in the sample under study. The created membrane electrodes are stable, have a concentration range of operation of pC 1–3, and can be used in the pH range 4–8. Testing of the selectivity of the ISEs with respect to Na+ and K+ ions showed that the electrodes are effective even in a thousandfold excess. The performance of the electrodes was tested using model systems.
Conclusions. Novel REE–cefazolin complexes were successfully demonstrated for use as electrode-active substances for the manufacture of membrane ISEs sensitive to cephalosporin antibiotics.
About the Authors
Timofey V. KryukovRussian Federation
Timofey V. Kryukov, Leading Engineer, Department of Inorganic and Analytical Chemistry
33, Zhelyabova ul., Tver, 170100
Scopus Author ID 57195754947
ResearсherID LQJ-1144-2024
Competing Interests:
The authors declare no conflict of interest
Mariana A. Feofanova
Russian Federation
MarianaA. Feofanova, Cand. Sci. (Chem.), Associate Professor, Dean of the Faculty of Chemistry and Technology
33, Zhelyabova ul., Tver, 170100
Scopus Author ID 14059766600
Competing Interests:
The authors declare no conflict of interest
Viktor M. Nikol’skii
Russian Federation
Viktor M. Nikol’skii, Dr. Sci. (Chem.), Professor, Department of Inorganic and Analytical Chemistry
33, Zhelyabova ul., Tver, 170100
Scopus Author ID 7006483319
ResearсherID B-5217-2014
Competing Interests:
The authors declare no conflict of interest
Alexandra I. Ivanova
Russian Federation
Alexandra I.Ivanova, Cand. Sci.(Phys.-Math.), Associate Professor, Department of Applied Physics, Faculty of Physics and Technology
33, Zhelyabova ul., Tver, 170100
Scopus Author ID 36720663600
ResearсherID X-1725-2018
Competing Interests:
The authors declare no conflict of interest
Ivan A. Kaplunov
Russian Federation
Ivan A. Kaplunov, Dr. Sci. (Eng.), Head of the Department of Applied Physics, Faculty of Physics and Technology
33, Zhelyabova ul., Tver, 170100
Scopus Author ID 6602690601
ResearсherID AAH-3551-2019
Competing Interests:
The authors declare no conflict of interest
References
1. Mendeleev D.I. Osnovy khimii (Fundamentals of Chemistry). V. 2. Moscow: Gosizdat; 1928. 771 p. (in Russ.).
2. Burdzy K., Ju Y., Kołodyńska D. Iminodisuccinic acid (IDHA) as an effective biodegradable complexing agent in the adsorption process of La(III), Nd(III) and Ho(III) ions. Chem. Eng. J. 2023;461:142059. https://doi.org/10.1016/j.cej.2023.142059
3. Aksela R., Rissanen J. Method for Producing of Chelating Agents: RF Pat. 2551285. Publ. 20.07.2015 (in Russ.).
4. Cokesa Z., Knackmuss H.J., Rieger P.G. Biodegradation of all stereoisomers of the EDTA substitute iminodisuccinate by Agrobacterium tumefaciens BY6 requires an epimerase and a stereoselective C-N lyase. Appl. Environ. Microbiol. 2004;70(7):3941–3947. https://doi.org/10.1128/AEM.70.7.3941-3947.2004
5. Hyvönen H., AkselaR. Complexation of some environmentally friendly carboxylic acid ligands with La3+ ion in aqueous solution. J. Coord. Chemistry. 2012;65(19):3352–3362. https://doi.org/10.1080/00958972.2012.708741
6. Hyvönen H., AkselaR. Complexation of some environmentally friendly carboxylic acid ligands with La3+ ion in aqueous solution. J. Coord. Chemistry. 2012;65(19):3352–3362. https://doi.org/10.1080/00958972.2012.708741
7. Smirnova T. I., Khizhnyak S.D., Nikol’skii V.M., et al. Degradation of complexons derived from succinic acid under UV radiation. Rus. J. Appl. Chem. 2017;90(4):507–511. https://doi.org/10.1134/S1070427217040024 [Original Russian Text: Smirnova T.I., Khizhnyak S.D., Nikol’skii V.M., Khalyapina Ya.M., Pakhomov P.M. Degradation of complexons derived from succinic acid under UV radiation. Zhurnal Prikladnoi Khimii. 2017;90(4): 406–411 (in Russ.).]
8. Lucena J.J., Sentís J.A., Villén M., Lao T., Pérez-Sáez M. IDHA chelates as a micronutrient source for green bean and tomato in fertigation and hydroponics. Agron. J. 2008;100(3): 813–818. https://doi.org/10.2134/agronj2007.0257
9. Aksela R., Peltonen J., Vekman A. Coated Seeds and Method of Seeds Coatings: RF Pat. 2345975. Publ. 10.02.2009 (in Russ.).
10. Zelinger A.S., Tolkacheva L.N., Kryukov T.V., Gridchin S.N., Nikol’skii V.M., Smirnova T.I. Method of Pre-Sowing Seed Treatment to Stimulate Formation of Green Pigments: RF Pat. 2813322. Publ. 12.02.2024 (in Russ.).
11. Salamatina E.V., Tolkacheva L.N., Nikol’skii V.M., Kryukov T.V., Gridchin S.N., Smirnova T.I. Method of Increasing Biomass of Cultivated Green Plants by Pre-Sowing Treatment of Seed and Treatment of Seedlings: RF Pat. 2816872. Publ. 08.04.2024 (in Russ.).
12. Kornilov A.D., Grigoriev M.S., Savinkina E.V. Comparison of the rare earth complexes iodides and polyiodides with biuret. Fine Chem. Technol. 2022;17(2):172–181. https://doi.org/10.32362/2410-6593-2022-17-2-172-181
13. Skobin M.I., Feofanova M.A., Nikolskiy V.M., Kryukov T.V., Alekseev V.G., Ivanova A.I. Physical and chemical properties, composition and thermal stability of a complex of neodium(III) with heparin. Russ. J. Phys. Chem. B. 2022;16(2):329–333. https://doi.org/10.1134/S1990793122020245 [Original Russian Text: Skobin M.I., Feofanova M.A., Nikolskiy V.M., Kryukov T.V., Alekseev V.G., Ivanova A.I. Physical and chemical properties, composition and thermal stability of a complex of neodium(III) with heparin. Khimicheskaya Fizika. 2022;41(4):38–34 (in Russ.). https://doi.org/10.31857/S0207401X22040100 ]
14. Skobin M.I., Feofanova M.A., Kryukov T.V. Theoretical and experimental study of macromolecular nanostructures based on heparin and lanthanoids. Fizikokhimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov = Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials. 2021;13:513–521 (in Russ.). https://doi.org/10.26456/pcascnn/2021.13.513
15. Kryukov T.V., Feofanova M.A., Nikolskiy V.M., et al. Synthesis and study of a metal complex of neodium and cefazolin. Russ. J. Phys. Chem. A. 2022;96(6):1254–1257. https://doi.org/10.1134/S0036024422060127 [Original Russian Text: Kryukov T.V., Feofanova M.A., Nikolskiy V.M., Alekseev V.G., Skobin M.I., Ivanova A.I. Synthesis and study of a metal complex of neodium and cefazolin. Zhurnal fizicheskoi khimii. 2022;96(6):871–874 (in Russ.). https://doi.org/10.31857/S0044453722060139 ]
16. Kulapina E.G., Snesarev S.V. Potentiometric sensors based on organic ion exchangers of tetraalkylammonium and silver complexes with ampicillin, oxacillin and cefazolin. J. Analyt. Chem. 2012;67(2):163–167. https://doi.org/10.1134/S1061934811120069 [Original Russian Text: Kulapina E.G., Snesarev S.V. Potentiometric sensors based on organic ion exchangers of tetraalkylammonium and silver complexes with ampicillin, oxacillin and cefazolin. Zhurnal analiticheskoi khimii. 2012;67(2):198–202 (in Russ.). ]
17. Partani P., Gurule S., Khuroo A., Monif T., Bhardwaj S. Liquid chromatography/electrospray tandem mass spectrometry method for the determination of cefuroxime in human plasma: Application to a pharmacokinetic study. J. Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2010;78(3–4):428–434. https://doi.org/10.1016/j.jchromb.2009.12.025
18. Du Y., Zhai Y., Zhang J., Wu C., Luo C., Sun J., He Z. Development and evaluation of taste-masked dry suspension of cefuroxime axetil for enhancement of oral bioavailability. Asian J. Pharm. Sci. 2013;8(5):287–294. https://doi.org/10.1016/j.ajps.2013.10.001
19. Mayakova M.N., Alekseev V.G., Ivanova A.I., Ryasenskii S.S. Solid state complexes of zinc(II) with cefazolin and cefotaxime. Vestnik Tverskogo gosudarstvennogo universiteta. Seriya: Khimiya = Herald of Tver State University. Series: Chemistry. 2015;3:5–13 (in Russ).
20. Jain R., Gupta V.K., Jadon N., Radhapyari K. Voltammetric determination of cefixime in pharmaceuticals and biological fluids. Anal. Biochem. 2010;407(1):79–88. https://doi.org/10.1016/j.ab.2010.07.027
21. Ojani R., Raoof J.B., Zamani S. A novel voltammetric sensor for amoxicillin based on nickel–curcumin complex modified carbon paste electrode. Bioelectrochemistry. 2012;85:44–49. https://doi.org/10.1016/j.bioelechem.2011.11.010
22. Kulapina O.I., Makarova N.M., Kulapina E.G. Potentiometric sensors for the determination of some cephalosporin antibiotics in biological fluids and medicinal preparations. Russ. J. Anal. Chem. 2015;70(4):477–484. https://doi.org/10.1134/S1061934815040073 [Original Russian Text: Kulapina O.I., Makarova N.M., Kulapina E.G. Potentiometric sensors for the determination of some cephalosporin antibiotics in biological fluids and medicinal preparations. Zhurnal analiticheskoi khimii. 2015;70(4):399–406 (in Russ.). https://doi.org/10.7868/S004445021504009X ]
23. Korotkin M.D., Filatova S.M., Denieva Z.G., Budanova U.A., Sebyakin Y.L. Synthesis of diethanolamine-based amino acid derivatives with symmetric and asymmetric radicals in their hydrophobic domain and potential antimicrobial activity. Fine Chem. Technol. 2022;17(1):50–64. https://doi.org/10.32362/2410-6593-2022-17-1-50-64
24. PřibilR. Analiticheskie primeneniya etilendiamintetrauksusnoi kisloty i rodstvennykh soedinenii (Analytical Applications of EDA and Related Compounds): transl. from Engl. Moscow: Mir; 1975. 534 p. (in Russ.). [Přibil R. Analytical Applications of EDA and Related Compounds. Oxford: Pergamon Press; 1972. 400 p.]
25. Sakharova Yu.G., Borisova G.M. Thermal stability of neodymium, samarium, europium and gadolinium thiocarbamide compounds. Zhurnal neorganicheskoi khimii. 1976;21(1):76–83 (in Russ.).
26. Pedroso T.M., Salgado H.R.N. Methods for Qualitative Analysis of Cefazolin Sodium Raw Material and Pharmaceutical Product. Phys. Chem. 2013;3(2):29–38. https://doi.org/10.5923/j.pc.20130302.01
27. Masoud M.S., Ali A.E., Sharaf R.Y. Physicochemical Studies of Some Biologically Active Metal Complexes of Cefazolin Antibiotics. J. Chem. Pharm. Res. 2020;12(9):42–52.
28. Kopytin A.V., Turyshev E.S., Madraimov M.Sh., et al. IonSelective Membrane Electrode for Determination of the Octahydrotriborate Anion. Russ. J. Inorg. Chem. 2023;68(1): 6–12. https://doi.org/10.1134/S0036023622700103 [Original Russian Text: Kopytin A.V., Turyshev E.S., Madraimov M.Sh., Kubasov A.S., Zhizhin K.Yu., Shpigun L.K., Kuznetsov N.T. Ion-Selective Membrane Electrode for Determination of the Octahydrotriborate Anion. Zhurnal neorganicheskoi khimii. 2023;68(1):10–16 (in Russ.). https://doi.org/10.31857/S0044457X22601432]
Review
For citations:
Kryukov T.V., Feofanova M.A., Nikol’skii V.M., Ivanova A.I., Kaplunov I.A. Rare-earth element complexes with complexones, heparin, and antibiotics in biosystems for use as electrode-active materials in membrane ion-selective electrodes. Fine Chemical Technologies. 2025;20(4):372-381. https://doi.org/10.32362/2410-6593-2025-20-4-372-381. EDN: QNZATD