Preview

Fine Chemical Technologies

Advanced search

Cr-substituted M-type hexaferrite solid solutions with high level of substitution

https://doi.org/10.32362/2410-6593-2025-20-4-344-356

EDN: PPMBCK

Abstract

Objectives. This study aims to synthesize strontium hexaferrites having a high level of chromium substitution (SrFe12−x Crx O19, x = 0–6) and investigate their structural, morphological, and magnetic properties.

Methods. The synthesis was carried out using the solid-phase reaction method at a temperature of 1400°C. The impact of chromium substitution for iron on the phase, structure, morphology, and magnetic characteristics was studied using powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, and vibrating-sample magnetometry.

Results. XRD analysis confirmed the development of single-phase samples having a hexagonal space group P63/mmc. An increase in Cr concentration leads to a decrease in unit cell parameters, due to the smaller ionic radius of Cr3+. The surface morphology of the samples consists of bulk crystallites a few microns in length. Substitution with Cr results in decreased saturation and remanent magnetization.

Conclusions. Pure samples of Cr-substituted strontium hexaferrite were synthesized. The linear dependence of the investigated structural parameters on the Cr concentration confirms the Cr substitution into the hexaferrite solid solution by Vegard’s law. In addition to structural parameters, magnetic characteristics were obtained for hexaferrite solid solutions. Saturation and remanent magnetization dependencies were shown to significantly decrease with Cr concentration, while coercive force varies in a complex dependence on Cr concentration. The sample with x = 1 has the highest product of coercive force and saturation magnetization, indicating its suitability for permanent magnet application.

About the Authors

Alena R. Zykova
South Ural State University National Research University
Russian Federation

Alena R. Zykova, Cand. Sci. (Chem.), Researcher, Crystal Growth Laboratory

76, Lenina pr., Chelyabinsk, 454080

Scopus Author ID 57203743055



Andrey I. Kovalev
South Ural State University National Research University
Russian Federation

Andrey I. Kovalev, Postgraduate Student, Department of Materials Science, Physical and Chemical Properties of Materials

76, Lenina pr., Chelyabinsk, 454080

Scopus Author ID 59364557200



Darya P. Sherstyuk
South Ural State University National Research University
Russian Federation

Darya P. Sherstyuk, Postgraduate Student, Department of Materials Science, Physical and Chemical Properties of Materials

76, Lenina pr., Chelyabinsk, 454080

Scopus Author ID 57208630693



Vladimir E. Zhivulin
South Ural State University National Research University
Russian Federation

Vladimir E. Zhivulin, Cand. Sci. (Phys.-Math.), Head of the Crystal Growth Laboratory

76, Lenina pr., Chelyabinsk, 454080

Scopus Author ID 57044766800

ResearсherID U-50003-2019



Sergey V. Taskaev
Chelyabinsk State University
Russian Federation

Sergey V. Taskaev, Dr. Sci. (Phys.-Math.), Rector

129, Brat’ev Kashirinykh ul., Chelyabinsk, 454001

Scopus Author ID 55886287900

ResearсherID AAU-9890-2021



Denis A. Vinnik
South Ural State University National Research University; Moscow Institute of Physics and Technology (State University); St. Petersburg State University
Russian Federation

Denis A. Vinnik, Dr. Sci. (Chem.), Professor, Department of Materials Science, Physical and Chemical Properties of Materials; Leading Researcher-Head of
the Laboratory of Semiconductor Oxide Materials; Professor, Institute of Chemistry

76, Lenina pr., Chelyabinsk, 454080; 9, Institutskii per., Dolgoprudnyi, Moscow oblast, 141700; 7–9, Universitetskaya nab., St. Petersburg, 199034

Scopus Author ID 24451310100

ResearсherID K-1594-2013



References

1. Khudaysh L., Ahmed I.A., Ejaz S.R., Khan S.A., Haleem Y.A., Ibrahim M.M., Ali M., Farid H.M.T, El-Bahy Z.M. Analysis of cerium substitution in Co–Sr based spinel ferrites for high frequency application. J. Rare Earths. 2023;42(9):1755–1763. https://doi.org/10.1016/j.jre.2023.10.013

2. He D., Xu Z., Wang K., Wu P., Cui J., Qiao L., Wang T. The regulation of high-frequency magnetic properties of NiZnCo ferrite for miniaturized antenna application. J. Magn. Magn. Mater. 2023;588(15):171449. https://doi.org/10.1016/j.jmmm.2023.171449

3. El Yaagoubi M., Schrödl M., Schwegler D., Münster B. Development of hard ferrite filled thermoplastic elastomers for the production of permanent magnets. Sensors ActuatorsAPhys. 2022;333(1):113224. https://doi.org/10.1016/j.sna.2021.113224

4. Waki T., Nakai S., Tabata Y., Nakamura H. Role of oxygen potential in dopant solubility in ferrite magnets: Enhanced Zn solubility and magnetization in La–Zn cosubstituted magnetoplumbite-type strontium ferrite. Mater. Res. Bull. 2023;168:112470. https://doi.org/10.1016/j.materresbull.2023.112470

5. Icin K., Akyol S., Alptekin F., Yıldız A., Sünbül S.E., Ergin İ., Öztürk S. A comparative study of the correlation among the phase formation, crystal stability and magnetic properties of SrFe12−xMxO19 (M=Al3+, Cr3+ and Mn3+, x = 0–0.5) ferrite permanent magnets. J. Solid State Chem. 2023;324:124126. https://doi.org/10.1016/j.jssc.2023.124126

6. Hashim M., Salih S.J., Ismail M.M., Ahmed A., Meena S.S., Gaikwad A.A., Jotania R.B., Kumar S., Ravinder D., Kumar R., Imran A., Batoo K.M., Shirsath S.E. Effect of lightly substituted samarium ions on the structural, optical, magnetic and dielectric properties of the sonochemically synthesized M-type Sr-hexaferrite nanoparticles. Phys. B: Condens. Matter. 2024;681:415840. https://doi.org/10.1016/j.physb.2024.415840

7. Rambabu C., Aruna B., Shanmukhi P.S.V., Gnana Kiran M., Murali N., Mammo T. Wegayehu, Parajuli D., Choppara P., Himakar P., Lakshmi Narayana P.V. Effect of La3+/Cu2+ and La3/Ni2+ substitution on the synthesis, magnetic and dielectric properties of M−type Sr1−x Lax Fe12−x Mx O19 (M = Cu and Ni) hexaferrite. Inorg. Chem. Commun. 2024;159:111753.

8. Gorbachev E.A., Lebedev V.A., Kozlyakova E.S., Alyabyeva L.N., Ahmed A., Cervellino A., Trusov L.A. Tuning the microstructure, magnetostatic and magnetodynamic properties of highly Al-substituted M-type Sr/Ca hexaferrites prepared by citrate-nitrate auto-combustion method. Ceram. Int. 2023;49(16): 26411–26419. https://doi.org/10.1016/j.ceramint.2023.05.177

9. Yao Y., Hrekau I.A., Tishkevich D.I., Zubar T.I., Turchenko V.A., Lu S., Silibin M.V., Migas D.B., Sayyed M.I., Trukhanov S.V., Trukhanov A.V. Correlation of the chemical composition, phase content, structural characteristics and magnetic properties of the Bi-substituted M-type hexaferrites. Ceram. Int. 2023;49(22): 37009–37016. https://doi.org/10.1016/j.ceramint.2023.09.033

10. Pullar R.C. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 2012;57(7):1191–1334. https://doi.org/10.1016/j.pmatsci.2012.04.001

11. Chandel M., Ghosh B.K., Moitra D., Ghosh N.N. Barium Hexaferrite (BaFe12O19) Nanoparticles as Highly Active and Magnetically Recoverable Catalyst for Selective Epoxidation of Styrene to Styrene Oxide. J. Nanosci. Nanotechnol. 2018;18(5):3478–3483. https://doi.org/10.1166/jnn.2018.14625

12. Khaliq N., Bibi I., Majid F., Sultan M., Amami M., Iqbal M. Zn and Mn doped Ba1−x Znx Fe12−y Mny O19 as highly photoactive under visible light with enhanced electrochemical and dielectric properties. Mater. Sci. Semicond. Process. 2022;139:106324. https://doi.org/10.1016/j.mssp.2021.106324

13. Danish M., ul Islam M., Ahmad F., Madni M.N., Jahangeer M. Synthesis of M-type hexaferrite reinforced graphene oxide composites for electromagnetic interference shielding. J. Phys. Chem. Solids. 2024;185:111783. https://doi.org/10.1016/j.jpcs.2023.111783

14. Gunanto Y.E., Izaak M.P., Sitompul H., Adi W.A. Composite Paint based on Barium-Strontium-Hexaferrite as an Absorber of Microwaves at X-band Frequency. Mater. Today Proc. 2019;13(1):1–4. https://doi.org/10.1016/j.matpr.2019.03.177

15. Chakradhary V.K., Akhtar M.J. Highly coercive strontium hexaferrite nanodisks for microwave absorption and other industrial applications. Compos. PartB: Eng. 2020;183:107667. https://doi.org/10.1016/j.compositesb.2019.107667

16. Trukhanov A.V., Turchenko V.A., Kostishin V.G., Damay F., Porcher F., Lupu N., Bozzo B., Fina I., Polosan S., Silibin M.V., Salem M.M., Tishkevich D.I., Trukhanov S.V. The origin of the dual ferroic properties in quasi-centrosymmetrical SrFe12−x Inx O19 hexaferrites. J.Alloys Compd. 2021;886:161249. https://doi.org/10.1016/j.jallcom.2021.161249

17. Wang X., Yan H., Zhao S., Liu S., Chang H. Modifiable natural ferromagnetic resonance frequency and strong microwave absorption in BaFe12−y−2x Aly Snx Mnx O19 M-type hexaferrite. J. Magn. Magn. Mater. 2023;586:171159. https://doi.org/10.1016/j.jmmm.2023.171159

18. Yousaf M., Nazir S., Hayat Q., Akhtar M.N., Akbar M., Lu Y., Noor A., Zhang J.-M., Shah M.A.K.Y., Wang B. Magneto-optical properties and physical characteristics of M-type hexagonal ferrite (Ba1−x Cax Fe11.4Al0.6O19) nanoparticles (NPs). Ceram. Int. 2021;47(8):11668–11676. https://doi.org/10.1016/j.ceramint.2021.01.006

19. Jyotsna K., Phanjoubam S. Improved magnetoelectric coupling of Co–Ti substituted barium hexaferrite at room temperature and related electrical investigations. Mater. Chem. Phys. 2024;317: 129186. https://doi.org/10.1016/j.matchemphys.2024.129186

20. Dongquoc V., Park S.-Y., Jeong J.-R., Tu B.D., Huong Giang D.T., Dang N.T., Phan T.L. Electronic structure, and dielectric, magnetic and reflection-loss behaviors of BaFe12−x Mnx O19 (0<x≤2) hexaferrites. J. Magn. Magn. Mater. 2023;588(8):171486.

21. Cheon S.J., Choi J.R., Lee S., Lee J.I., Lee H. Frequency tunable Ni–Ti‐substituted Ba–M hexaferrite for efficient electromagnetic wave absorption in 8.2–75 GHz range. J. Alloys Compd. 2024;976:173019. https://doi.org/10.1016/j.jallcom.2023.173019

22. Hashhash A., Hassen A., Baleidy W.S., Refai H.S. Impact of rare-earth ions on the physical properties of hexaferrites Ba0.5Sr0.5RE0.6Fe11.4O19, (RE = La, Yb, Sm, Gd, Er, Eu, and Dy). J. Alloys Compd. 2021;873:159812. https://doi.org/10.1016/j.jallcom.2021.159812

23. Atif M., Hanif Alvi M., Ullah S., Ur Rehman A., Nadeem M., Khalid W., Ali Z., Guo H. Impact of strontium substitution on the structural, magnetic, dielectric and ferroelectric properties of Ba1−x Srx Fe11Cr1O19 (x = 0.0–0.8) hexaferrites. J. Magn. Magn. Mater. 2020;500:166414. https://doi.org/10.1016/j.jmmm.2020.166414

24. Zhivulin V.E., Trofimov E.A., Zaitseva O. V., Sherstyuk D.P., Cherkasova N.A., Taskaev S.V., Vinnik D.A., Alekhina Y.A., Perov N.S, Naidu K.C.B., Elsaeedy H.I., Khandaker M.U., Tishkevich D.I., Zubar T.I., Trukhanov A.V., Trukhanov S.V. Preparation, phase stability, and magnetization behavior of high entropy hexaferrites. IScience. 2023;26(7):107077. https://doi.org/10.1016/j.isci.2023.107077

25. Yao Y., Zhivulin V.E., Zykova A.R., Cherkasova N.A., Vinnik D.A., Trofimov E.A., Gudkova S.A., Zaitseva O.V., TaskaevS.V., AlyabyevaL.N., GorshunovB.P., GurchenkoA.A., Lu S., Trukhanov S.V., Trukhanov A.V. High entropy BaFe12−x (Ti/Mn/Ga/In)x O19 (x = 1–7) oxides: Correlation of the composition, entropy state, magnetic characteristics, and terahertz properties. Ceram. Int. 2023;49(19):31549–31558. https://doi.org/10.1016/j.ceramint.2023.07.106

26. Luo X., Huang S., Huang R., Hong J., Yuan S., Shu Z., Zhao L., Lu C., Jin H. Rare-earth high-entropy magnetoplumbite structure hexaluminates (La1/5Nd1/5Sm1/5Eu1/5Gd1/5)MAl11O19 (M = Mg, Zn) for thermal barrier coating applications with enhanced mechanical and thermal properties. Ceram. Int. 2024;50(12): 21281–21288. https://doi.org/10.1016/j.ceramint.2024.03.237

27. Qiu J., Wang Y., Gu M. Effect of Cr substitution on microwave absorption of BaFe12O19. Mater. Lett. 2006;60(21–22): 2728–2732. https://doi.org/10.1016/j.matlet.2006.01.079

28. Ounnunkad S., Winotai P. Properties of Cr-substituted M-type barium ferrites prepared by nitrate–citrate gel-autocombustion process. J. Magn. Magn. Mater. 2006;301(2):292–300. https:// doi.org/10.1016/j.jmmm.2005.07.003

29. Dhage Vinod N., Mane M.L., Babrekar M.K., Kale C.M., Jadhav K.M. Influence of chromium substitution on structural and magnetic properties of BaFe12O19 powder prepared by sol–gel auto combustion method. J. Alloys Compd. 2011;509(12):4394–4398. https://doi.org/10.1016/j.jallcom.2011.01.040

30. Qiu J., Gu M., Shen H. Microwave absorption properties of Al- and Cr-substituted M-type barium hexaferrite. J. Magn. Magn. Mater. 2005;295(3):263–268. https://doi.org/10.1016/j.jmmm.2005.01.018

31. Kumar S., Supriya S., Kar M. Correlation between temperature dependent dielectric and DC resistivity of Cr substituted barium hexaferrite. Mater. Res. Express. 2017;4:126302. https://doi.org/10.1088/2053-1591/aa9a51

32. Bashkirov L.A., Kostyushko Yu.L. Formation of FerriteCromites BaFe10Cr2O19 and BaFe10Cr2O19 in the SolidPhase reaction of Fe2O3 and Cr2O3 with barium or strontium carbonate. Russ. J. Appl. Chem. 2005;78:351–355. http://doi.org/10.1007/s11167-005-0294-z [Original Russian Text: Bashkirov L.A., Kostyushko Yu.L. Formation of Ferrite-Cromites BaFe10Cr2O19 and BaFe10Cr2O19 in the Solid-Phase reaction of Fe2O3 and Cr2O3 with barium or strontium carbonate. Zhurnal Prikladnoi Khimii. 2005;78(3):357–361 (in Russ.).]

33. Wong-Ng W., McMurdie H.F., Paretzkin B., Kuchinski M.A., Dragoo A.L. Standard X-Ray Diffraction Powder Patterns of Fourteen Ceramic Phases. Powder Diffr. 1988;3(4):246–254. https://doi.org/10.1017/S0885715600013579

34. Obradors X., Solans X., CollombA., Samaras D., Rodriguez J., Pernet M., Font-Altaba M. Crystal structure of strontium hexaferrite SrFe12O19. J. Solid State Chem. 1988;72(2): 218–224. https://doi.org/10.1016/0022-4596(88)90025-4


Review

For citations:


Zykova A.R., Kovalev A.I., Sherstyuk D.P., Zhivulin V.E., Taskaev S.V., Vinnik D.A. Cr-substituted M-type hexaferrite solid solutions with high level of substitution. Fine Chemical Technologies. 2025;20(4):344-356. https://doi.org/10.32362/2410-6593-2025-20-4-344-356. EDN: PPMBCK

Views: 23


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)