Aluminum oxynitrides doped with rare-earth and transition metal ions
https://doi.org/10.32362/2410-6593-2025-20-4-324-343
EDN: KEDCJH
Abstract
Objectives. The work set out to summarize the results of the studies of aluminum oxynitrides (AlONs) doped with rare earth (REM) and transition metals (TM) and to highlight the main effects of REM and TM dopants on the formation, phase composition, and optical properties of the AlON.
Results. The presented analysis of the literature data includes the results of our own studies of the AlON doped with REM and TM ions. The influence of REM and TM additives on the formation of AlON and its phase com position, as well as optical properties, was considered.
Conclusions. It is clearly shown that the doping with REM and TM ions enhances the formation of pure AlON phase via high-temperature synthesis from oxide and nitride. The oxynitride matrix exhibits reducing properties with respect to both REM and TM. Doping with the REM ions leads to the emergence of luminescent properties in the visible range, while doping with TM ions affects the band gap in AlON as a semiconductor. The solubility limits of all metals in the AlON matrix do not exceed 1–2 at. % vs Al. Concentration quenching of luminescence is observed at REM contents from 0.1 to 0.5 at. %.
Keywords
About the Authors
Nailya S. AkhmadullinaRussian Federation
Nailya S. Akhmadullina, Cand. Sci. (Chem.), Senior Researcher, Laboratory of Physical and Chemical Analysis of the Ceramic Materials
Scopus Author ID 26432528700
ResearcherID M-7540-2018
49, Leninskii pr., Moscow, 119991
Competing Interests:
Authors declare no conflicts of interest
Aleksey V. Ishchenko
Russian Federation
Alexey V. Ishchenko, Cand. Sci. (Phys.-Math.), Associate Professor, Senior Researcher, Department of Experimental Physics
Scopus Author ID 57195266830
19, Mira pr., Yekaterinburg, 620062
Competing Interests:
Authors declare no conflicts of interest
References
1. Abyzov A.M. Aluminum oxide and alumina ceramics (Review). Part 1. Properties of Al2O3 and industrial production of dispersed Al2O3. Novye ogneupory = New Refractories. 2019;1:16–23 (in Russ.). https://doi.org/10.17073/1683-4518- 2019-1-16-23
2. Yamaguchi G., Yanagida H. Study on the reductive spinel – a new spinel formula AlN–Al2O3 instead of the previous one Al3O4. Bull. Chem. Soc. Jap. 1959;32(11):1264–1265. https://doi.org/10.1246/bcsj.32.1264
3. McCauley J.W. A simple model for aluminum oxynitride spinels. J. Am. Ceram. Soc. 1978;61(7–8):372–373. https://doi.org/10.1111/j.1151-2916.1978.tb09336.x
4. McCauley J.W., Corbin N.D. Phase relations and reaction sintering of transparent cubic aluminum oxynitride spinel (ALON). J. Am. Ceram. Soc. 1979;62(9–10):476–479. https://doi.org/10.1111/j.1151-2916.1979.tb19109.x
5. McCauley J.W., Patel P., Chen M., Gilde G., Strassburger E., Paliwal B., Dandekar D.P. ALON: a brief history of its emergence and evolution. J. Eur. Ceram. Soc. 2009;29(2): 223–236. https://doi.org/10.1016/j.jeurceramsoc.2008.03.046
6. McCauley J.W., Corbin N.D. High Temperature Reactions and Microstructures in the Al2O3-AlN System. In: Riley F.L. (Ed.). Progress in Nitrogen Ceramics. NATO ASI Series. Springer; 1983. V. 65. P. 111–118. https://doi.org/10.1007/978-94-009-6851-6_8
7. Batyrev I.G., Taylor D.E., Gazonas G.A., McCauley J.W. Density functional theory and evolution algorithm calculations of elastic properties of AlON. J. Appl. Phys. 2014;115(2):023505. https://doi.org/10.1063/1.4859435
8. Swab J.J., LaSalvia J.C., Gilde G.A., Patel P.J., Motyka M.J. Transparent armor ceramics: Alon and spinel. Ceram. Eng. Sci. Proc. 1999;20(4):79–84. https://doi.org/10.1002/9780470294574.ch10
9. Maguire E.A., Rawson J.K., Tustison R.W. Aluminum oxynitride’s resistance to impact and erosion. In: SPIE’s 1994 Int. Symposium on Optics, Imaging, and Instrumentation. Proc. SPIE. 1994;2286:26–32. https://doi.org/10.1117/12.187372
10. Kargin Yu.F., Akhmadullina N.S., Solntsev K.A. Ceramic Materials and Phosphors Based on Silicon Nitride and SiALON. Inorg. Mater. 2014;50(13):1325–1342. https://doi.org/10.1134/S0020168514130032
11. Shang M., Geng D., Yang D., Kang X., Zhang Y., Lin J. Luminescence and energy transfer properties of Ca2Ba3(PO4) 3Cl and Ca2Ba3(PO4)3Cl:A (A = Eu2+/Ce3+/Dy3+/Tb3+) under UV and low-voltage electron beam excitation. Inorg. Chem. 2013;52(6):3102–3112. https://doi.org/10.1021/ic3025759
12. Liu H., Luo Y., Mao Z., Liao L., Xia Z. A novel single-composition trichromatic white-emitting Sr3.5Y6.5O2(PO4)1.5(SiO4)4.5: Ce3+/Tb3+/Mn2+phosphor: synthesis, luminescent properties and applications for white LEDs. J. Mater. Chem. C. 2014;2(9):1619–1627. https://doi.org/10.1039/C3TC32003K
13. Lin C.C., Liu R.S. Advances in phosphors for light-emitting diodes. J. Phys. Chem. Lett. 2011;2(11):1268–1277. https://doi.org/10.1021/jz2002452
14. Yamamoto H. White LED phosphors: the next step. Proc. SPIE. 2010;7598:08–14. https://doi.org/10.1117/12.843536
15. Bachmann V., Ronda C., Meijerink A. Temperature quenching of yellow Ce3+ luminescence in YAG:Ce. Chem. Mater. 2009;21(10):2077–2084. http://dx.doi.org/10.1021/cm8030768
16. Setlur A.A. Phosphors for LED-based solid-state lighting. Electrochem. Soc. Interface. 2009;18(4):32–36. http://dx.doi.org/10.1149/2.F04094IF
17. Xia Z.G., Wang X.M., Wang Y.X., Liao L.B., Jing X.P. Synthesis, structure, and thermally stable luminescence of Eu2+-doped Ba2Ln(BO3)2Cl (Ln = Y, Gd and Lu) host compounds. Inorg. Chem. 2011;50(20):10134–10142. https://doi.org/10.1021/ic200988w
18. Zhu G., Wang Y., Ci Z., Liu B., Shi Y., Xin S. Ca5 La5 (SiO4 ) 3 (PO4 ) 3 O2 : Ce3+,Mn2+: A color-tunable phosphor with efficient energy transfer for white light-emitting diodes. J. Electrochem. Soc. 2011;158:J236–J242. https://doi.org/10.1149/1.3595434
19. Fukuyama H., Nakao W., Susa M., Nagata K. New synthetic method of forming aluminum oxynitride by plasma arc melting. J. Am. Ceram. Soc. 1999;82(6):1381–1387. https://doi.org/10.1111/j.1151-2916.1999.tb01927.x
20. Rafaniello W., Cutler I.B. Preparation of sinterable cubic aluminum oxynitride by the carbothermal nitridation of aluminum-oxide. J. Am. Ceram. Soc. 1981;64(10):128–C128. https://doi.org/10.1111/j.1151-2916.1981.tb10232.x
21. Zientara D., Bućko M.M., Lis J. ALON-based materials prepared by SHS technique. J. Eur. Ceram. Soc. 2007;27(2–3): 775–779. https://doi.org/10.1016/j.jeurceramsoc.2006.04.008
22. Wang S.F., Zhang J., Luo D.W., Gua F., Tang D.Y., Dong Z.L., Kong L.B. Transparent ceramics: Processing, materials and applications. Prog. Sol. State Chem. 2013;41:20–54. https://doi.org/10.1016/j.progsolidstchem.2012.12.002
23. Patel P.J., Gilde G., McCauley J.W. The role of gas pressure in transient liquid phase sintering of aluminum oxynitride (Alon). Cer. Eng. Sci. Proc. 2003;24(3):425–431. https://doi.org/10.1002/9780470294802.ch61
24. Martin C., Cales B. Synthesis and Hot Pressing Of Transparent Aluminum Oxynitride. In: SPIE 1989 Technical Symposium on Aerospace Sensing. Proc. SPIE; 1989. V. 1112. P. 20–24. https://doi.org/10.1117/12.960759
25. Jin X., Gao L., Sun J., Liu Y., Gui L. Highly Transparent AlON Pressurelessly Sintered from Powder Synthesized by a Novel Carbothermal Nitridation Method. J. Am. Ceram. Soc. 2012;95(9): 2801–2807. https://doi.org/10.1111/j.1551-2916.2012.05253.x
26. Wang J., Zhang F., Chen F., Zhang J., Zhang H., Tian R., Wang Z., Liu J., Zhang Z., Chen S., Wang S. Effect of Y2O3 and La2O3 on the sinterability of γ-AlON transparent ceramics. J. Eur. Ceram. Soc. 2015;35(1):23–28. https://doi.org/10.1016/j.jeurceramsoc.2014.07.016
27. Tsukuma K. Transparent MgAl2O4 Spinel Ceramics Produced by HIP Post-Sintering. J. Ceram. Soc. Jap. 2006;114(1334): 802–806. https://doi.org/10.2109/jcersj.114.802
28. Chen F., Zhang F., Wang J., Zhang H., Tian R., Zhang J., Zhang Z., Sun F., Wang S. Microstructure and optical properties of transparent aluminum oxynitride ceramics by hot isostatic pressing. Scripta Mater. 2014;81:20–23. https://doi.org/10.1016/j.scriptamat.2014.02.009
29. Chen F., Zhang F., Wang J., Zhang H., Tian R., Zhang Z., Wang S. Hot isostatic pressing of transparent AlON ceramics with Y2O3/La2O3 additives. J. Alloys Compd. 2015;650: 753–757. https://doi.org/10.1016/j.jallcom.2015.08.028
30. Zhang J., Lei J., Shi Y., Xie J., Lei F., Zhang L. Effect of Y2O3, La2O3 and MgO Co-Doping on Densification, Microstructure and Properties of AlON Ceramics. J. Ceram. Sci. Tech. 2017;8(1):177–182. https://dx.doi.org/10.4416/JCST2016-00114
31. DongQ., YangF., CuiJ., TianY., LiuS., DuF., PengJ., YeX. Enhanced narrow green emission and thermal stability in γ-AlON:Mn2+,Mg2+ phosphor via charge compensation. Ceram. Int. 2019;45(9): 11868–11875. https://doi.org/10.1016/j.ceramint.2019.03.069
32. Thi M.H.N., Le P.X. Utilizing a strait-range green phosphor γ-AlON: Mn,Mg for the task of achieving a super-broad hue gamut display. Indones. J. Electr. Eng. Comput. Sci. 2022;27(2): 748–753. http://doi.org/10.11591/ijeecs.v27.i2.pp748-753
33. Kikkawa S., Hatta N., Takeda T. Preparation of Aluminum Oxynitride by Nitridation of a Precursor Derived from Aluminum–Glycine Gel and the Effects of the Presence of Europium. J. Am. Ceram. Soc. 2008;91(3):924–928. https://doi.org/10.1111/j.1551-2916.2007.02213.x
34. Yin L., Xu X., Hao L., Xie W., Wang Y., Yang L., Yang X. Synthesis and photoluminescence of Eu2+–Mg2+ co-doped γ-AlON phosphors. Mater. Lett. 2009;63(17):1511–1513. https://doi.org/10.1016/j.matlet.2009.04.002
35. Zhang F., Chen S., Chen J.F., Zhang H.L., Li J., Liu X.J., Wang S.W. Characterization and luminescence properties of AlON:Eu2+ phosphor for white-emitting-diode illumination. J. Appl. Phys. 2012;111(8):083532. https://doi.org/10.1063/1.4705404
36. Zhang L., Luo H., Zhou L., Liu Q., Li J., Zhang W. Preparation of γ-aluminum oxynitride phosphor with Eu doping by direct nitridation in ammonia and postannealing. J. Am. Ceram. Soc. 2018;101(8):3299–3308. https://doi.org/10.1111/jace.15494
37. Akhmadullina N.S., Lysenkov A.S., Ashmarin A.A., BaranchikovA.E., IshchenkoA.V., YagodinV.V., Shul’ginB.V., Kargin Yu.F. Synthesis and luminescence properties of Eu2+- and Ce3+-doped AlONs. Ceram. Int. 2016;42(1):286–293. https://doi.org/10.1016/j.ceramint.2015.08.107
38. Akhmadullina N.S., Ishchenko A.V., Yagodin V.V., et al. Synthesis and Luminescence Properties of Tb3+-Doped Aluminum Oxynitride. Inorg. Mater. 2019;55(12):1223–1229. http://dx.doi.org/10.1134/S002016851912001X [Original Russian Text: Akhmadullina N.S., Ishchenko A.V., Yagodin V.V., Lysenkov A.S., Sirotinkin V.P., Kargin Yu.F., Shulgin B.V. Synthesis and Luminescence Properties of Tb3+- Doped Aluminum Oxynitride. Neorganicheskie materialy. 2019;55(12):1298–1304 (in Russ.). https://doi.org/10.1134/S0002337X19120017]
39. Akhmadullina N.S., Ishchenko A.V., Lysenkov A.V., Shishilov O.N., Kargin Yu.F. Synthesis and luminescence properties of Eu2+/Ce3+, Ce3+/Tb3+ and Eu2+/Tb3+ co-doped AlONs. J. Alloys Compd. 2021;887:161410. https://doi.org/10.1016/j.jallcom.2021.161410
40. Zorenko Y., Zorenko T., Voznyak T., Mandowski A., Xia Q., Batentschuk M., Friеdrich J. Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds. IOP Conf. Ser.: Mater. Sci. Eng. 2010;15:012060. http://dx.doi.org/10.1088/1757-899X/15/1/012060
41. Trinkler L., Berzina B. Localised transitions in luminescence of AlN ceramics. Radiat. Meas. 2014;71:232–236. https://doi.org/10.1016/j.radmeas.2014.02.016
42. Weinstein I.A., Vokhmintsev A.S., Spiridonov D.M. Thermoluminescence kinetics of oxygen-related centners in AlN single crystals. Diam. Relat. Mater. 2012;25:59–62. https://doi.org/10.1016/j.diamond.2012.02.004
43. Zhang X., Li Z., Zeng Q. First-principles calculation on the electronic structure and optical properties of Eu2+ doped γ-AlON phosphor. Ceram. Int. 2018;44(2):1461–1466. https:// doi.org/10.1016/j.ceramint.2017.10.044
44. FrenchR.H. Electronic band structure of Al2O3, with comparison to AlON and AIN. J. Am. Ceram. Soc. 1990;73(3):477–489. https://doi.org/10.1111/j.1151-2916.1990.tb06541.x
45. Thomas M.E., Tropf W.J., Gilbert S.L. Vacuum-ultraviolet characterization of sapphire ALON, and spinel near the band gap. Opt. Eng. 1993;32(6):1340–1343. https://doi.org/10.1117/12.135837
46. Chen C.-F., Yang P., King G., Tegtmeier E.L. Processing of Transparent Polycrystalline AlON:Ce3+ Scintillators. J. Am. Ceram. Soc. 2016;99(2):424–430. https://doi.org/10.1111/jace.13986
47. Hu W.-W., Zhu Q.-Q., Hao L.-Y., Xu X., Agathopoulos S. Luminescence properties and energy transfer in Al5O6N:Ce3+,Tb3+ phosphors. J. Luminesc. 2014;149:155–158. https://doi.org/10.1016/j.jlumin.2014.01.010
48. Cavalli E., Boutinaud P., Mahiou R., Bettinelli M., Dorenbos P. Luminescence Dynamics in Tb3+-Doped CaWO4 and CaMoO4 Crystals. Inorg. Chem. 2010;49(11):4916–4921. https://doi.org/10.1021/ic902445c
49. Baklanova Y.V., Maksimova L.G., Denisova T.A., Tyutyunnik A.P., Zubkov V.G. Synthesis and Luminescence Properties of Tb3+ and Dy3+ Doped Li7La3Hf2O12 with Tetragonal Garnet Structure. Opt. Mater. 2019;87:122–126. https://doi.org/10.1016/j.optmat.2018.04.041
50. Han B., Liang H., HuangY., TaoY., Su Q. Vacuum Ultraviolet− Visible Spectroscopic Properties of Tb3+ in Li(Y,Gd)(PO3) 4: Tunable Emission, Quantum Cutting, and Energy Transfer. J. Phys. Chem. C. 2010;114(14):6770–6777. https://doi.org/10.1021/jp100755d
51. Zhang F., Wang S.W., Liu X.J., An L.Q., Yuan X.Y. Upconversion luminescence in Er-doped g-AlON ceramic phosphors. J. Appl. Phys. 2009;105(9):093542. https://doi.org/10.1063/1.3125516
52. Zhang F., Chen S., Zhang H.L., LiJ., YangY., Zhou G.H., Liu X.J., WangS.W. Upconversion Luminescence of γ-AlON:Er3+ Phosphors with Mg2+ Co-Doping. J. Am. Ceram. Soc. 2012;95(1):27–29. https://doi.org/10.1111/j.1551-2916.2011.04916.x
53. Wang Y., Xie X., Qi J., Wang S., Wei N., Lu Z., Chen X., Lu T. Bifunctional behavior of Er3+ ions as the sintering additive and the fluorescent agent in Er3+ single doped γ-AlON transparent ceramics. J. Luminsc. 2016;175:203–206. https://doi.org/10.1016/j.jlumin.2016.02.039
54. Tsabit A.M., Kim M.-D., Yoon D.-H. Effects of various rareearth additives on the sintering and transmittance of γ-AlON. J. Eur. Ceram. Soc. 2020;40(8):3235–3243. https://doi.org/10.1016/j.jeurceramsoc.2020.03.027
55. Tsabit A.M., Chung W.J., Lee H., Yoon D.-H. Fabrication and photoluminescence of γ-AlON:Sm and Yb. J. Am. Ceram. Soc. 2022;42(4):1348–1353. https://doi.org/10.1016/j.jeurceramsoc.2021.12.015
56. Liu R.S., Liu Y.H., Bagkar N.C., Hu S.F., Enhanced luminescence of SrSi2O2N2:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions. Appl. Phys. Lett. 2007;91(6):061119. http://dx.doi.org/10.1063/1.2768916
57. Song X., Fu R., Agathopoulos S., He H., Zhao X., Li R., Luminescence and energy transfer mechanism in SrSi2O2N2:Ce3+, Eu2+ phosphors for white LEDs. J. Electrochem. Soc. 2010;157(2):J34–J38. https://doi.org/10.1149/1.3270491
58. Jian X., Wang H., Lee M.-H., Tian W., Chen G.-Z., Chen W.-Q., Ji W.-W., Xu X., Yin L.-J. Insight the Luminescence Properties of AlON: Eu, Mg Phosphor under VUV Excitation. Mater. 2017;10(7):723. https://doi.org/10.3390/ma10070723
59. DengL., LeiJ., ShiY., LinT., RenY., Xie J., Photoluminescence of Tb3+/Ce3+ co-doped aluminum oxynitride powders. Mater. Lett. 2011;65(4):769–771. https://doi.org/10.1016/j.matlet.2010.11.027
60. Wu Q., Li Y., Wang X., Zhao Z., Wang C., Li H., Mao A., Wang Y. Novel optical characteristics of Eu2+ doped and Eu2+, Ce3+ co-doped LiSi2N3 phosphors by gas-pressed sintering. RSC Adv. 2014;4(73):39030–39036. https://doi.org/10.1039/ C4RA05502K
61. Chen L., Du F., Liang Y., Zhu Y., Xiao Y., Peng J. A study on photoluminescence and energy transfer of γ-AlON:Ce3+,Eu2+ phosphors for application in full-visible-spectrum LED lighting. Displays. 2022;71:102147. https://doi.org/10.1016/j.displa.2021.102147
62. Zhang J., Ma C., Wen Z., Du M., Long J., Ma R., Yuan X., Li J., Cao Y. Photoluminescence and energy transfer properties of Eu2+ and Tb3+ co-doped gamma aluminum oxynitride powders. Opt. Mater. 2016;58:290–295. https://doi.org/10.1016/j.optmat.2016.05.048
63. Xie R.-J., Hirosaki N., Liu X.-J., Takeda T., Li H.-L. Crystal Structure and Photoluminescence of Mn2+, Mg2+ Codoped Gamma Aluminum Oxynitride (γ-AlON): A Promising Green Phosphor for White Light-Emitting Diode. Appl. Phys. Lett. 2008;92(20):201905. https://doi.org/10.1063/1.2920190
64. Kitaura M., Harima A., Xie R.-J., Takeda T., Hirosaki N., OhnishiA., Sasaki M. Electron Spin Resonance Study on Local Structure of Manganese Ions Doped in Gamma-Aluminum Oxynitride Phosphors. J. Light & Vis. Env. 2012;36(1):6–9. https://doi.org/10.2150/jlve.36.6
65. HaoL., MiaoX., LiK., ZhongJ., TuB., YangZ., WangH. Structural and Luminescent Properties of Mg0.25−x Al2.57O3.79N0.21:xMn2+ Green-Emitting Transparent Ceramic Phosphor. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 2024;39(3):533–540. https://doi.org/10.1007/s11595-024-2909-3
66. Zhou X., Chen S., Zhang C., Huang X., Lu K., Qi L., Lu T. Mn2+/Mg2+ co-doped AlON ceramic with ultra-narrowband green emission combining high transparency toward a wide gamut backlight application. Opt. Lett. 2024;49(9): 2245–2248. https://doi.org/10.1364/OL.520495
67. Liu L., Zhang J., Wang X., Hou W., Liu X., Xu M., Yang J., Liang B. Preparation and fluorescence properties of a Cr3+:g-AlON powder by high temperature solid state reaction. Mater. Lett. 2020;258:126811. https://doi.org/10.1016/j.matlet.2019.126811
68. Ishchenko A.V., Akhmadullina N.S., Leonidov I.I., Sirotinkin V.P., Skvortsova L.G., Shishilov O.N., Zhidkov I.S., Kukharenko A.I., Kargin Yu.F. Synthesis and spectroscopic properties of aluminum oxynitride doped with 3d-metal ions: The case of γ-AlON:Ti. J. Alloys Compd. 2023;934:167792. https://doi.org/10.1016/j.jallcom.2022.167792
69. Ishchenko A.V., Akhmadullina N.S., Leonidov I.I., Sirotinkin V.P., Skvortsova L.G., Mandrygina D.A., Shishilov O.N., Zhidkov I.S., KukharenkoA.I., Weinstein I.A., Kargin Yu.F. Synthesis, phase composition, electronic and spectroscopic properties of cobalt-doped aluminum oxynitride. Physica B: Condens. Matter. 2024;695:416593. https://doi.org/10.1016/j.physb.2024.416593
70. Ishchenko A.V., Akhmadullina N.S., Pastukhov D.A., et al. Phase composition and optical properties of Fe-doped aluminum oxynitride. Inorg. Mater. 2024;60(3):859–866. https://doi.org/10.1134/S002016852470119X] [Original Russian Text: Ishchenko A.V., Akhmadullina N.S., Pastukhov D.A., Leonidov I.I., Sirotinkin V.P., Lysenkov A.S., Shishilov O.N., Kargin Yu.F. Phase composition and optical properties of Fe-doped aluminum oxynitride. Neorganicheskie materialy. 2024;60(3):322–330 (in Russ.).
71. Kubelka P., Munk F. Ein beitrag zur optik der farbanstriche. Z. Tech. Phys. 1931;12:593–601.
72. Du X., Yao S., Jin X., Chen H., LiW., Liang B. Radiation damage and luminescence properties of gamma aluminum oxynitride transparent ceramic. J.Phys.D.: Appl. Phys. 2015;48(34):345104. https://doi.org/10.1088/0022-3727/48/34/345104
73. Tauc J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968;3(1):37–46. https://doi.org/10.1016/0025-5408(68)90023-8
74. Xu J., Cherepy N.J., Ueda J., Tanabe S. Red persistent luminescence in rare earth- free AlN:Mn2+ phosphor. Mater. Lett. 2017;206:175–177. https://doi.org/10.1016/j.matlet.2017.07.015
75. Zorenko Y., Zorenko T., Voznyak T., Nizhankovskiy S., Krivonosov E., Danko A., Puzikov V., Comparative study of the luminescence of Al2O3:Ti and Al2O3 crystals under VUV synchrotron radiation excitation. Opt. Mater. 2013;35(12): 2053–2055. https://doi.org/10.1016/j.optmat.2012.10.044
76. Gaffney E.S. Spectra of tetrahedral Fe2+ in MgAl2O4. Phys. Rev. B. 1973;8:3484–3486. https://doi.org/10.1103/PhysRevB.8.3484
77. Basyrova L., Bukina V., Balabanov S., Belyaev A., Drobotenko V., Dymshits O., Alekseeva I., Tsenter M., Zapalova S., Khubetsov A., Zhilin A., Volokitina A., Vitkin V., Mateos X., Serres J.M., Camy P., Loiko P. Synthesis, structure and spectroscopy of Fe2+:MgAl2O4 transparent ceramics and glass-ceramics. J. Lumin. 2021;236:118090. https://doi.org/10.1016/j.jlumin.2021.118090
78. Thi Le T.-L., Nguyen L.T., Nguyen H.-H., Van Nghia N., Vuong N.M., Hieu H.N., Van Thang N., Le V.T., Nguyen V.H., Lin P.-C., Yadav A., Madarevic I., Janssens E., Van Bui H., Ngoc L.L.T. Titanium nitride nanodonuts synthesized from natural ilmenite ore as a novel and efficient thermoplasmonic material. Nanomaterials. 2021;11(1):76. https://doi.org/10.3390/nano11010076
79. Taborda J.A.P., Landázuri H.R., Londoño L.P.V. Correlation Between Optical, Morphological, and Compositional Properties of Aluminum Nitride Thin Films by Pulsed Laser Deposition. IEEE Sens. J. 2016;16(2):359–364. https://doi.org/10.1109/JSEN.2015.2466467
80. Prieto P., Kirby R.E. X-ray photoelectron spectroscopy study of the difference between reactively evaporated and direct sputter-deposited TiN films and their oxidation properties. J. Vac. Sci. Technol. A. 1995;13(6):2819–2826. https://doi.org/10.1116/1.579711
Review
For citations:
Akhmadullina N.S., Ishchenko A.V. Aluminum oxynitrides doped with rare-earth and transition metal ions. Fine Chemical Technologies. 2025;20(4):324-343. https://doi.org/10.32362/2410-6593-2025-20-4-324-343. EDN: KEDCJH