Preview

Fine Chemical Technologies

Advanced search

Use of ion-exchange resins for purification of L-lactic acid-containing Rhizopus oryzae fermentation broth

https://doi.org/10.32362/2410-6593-2025-20-3-223-236

EDN: HJIVQS

Abstract

   Objectives. The work set out to describe conditions for the purification of a model fermentation broth for cultivating the lactic acid-containing micromycete Rhizopus oryzae from impurities of inorganic salts using ion-exchange resins under dynamic conditions.

   Methods. The solutions collected for analysis were examined using precipitation titration to determine the concentration of chlorides along with a qualitative reaction with Nessler’s reagent to ascertain the presence of ammonium ions. The concentration of lactic acid was evaluated spectrophotometrically using iron(III) chloride. The total nitrogen content was determined by high-temperature catalytic combustion on a Formacs HT TOC/TN Analyzer (Netherlands). The content of trace elements and macroelements in the samples was determined using an iCAP 6300 Duo inductively coupled plasma emission spectrometer (United Kingdom).

   Results. Purification of the model broth under the described conditions was carried out by successive filtration through the cation exchanger KU-2-8 in the H-form and subsequently through a mixture of weakly basic A847 and strongly basic AV-17-8 anion exchangers in the OH-form taken in a one-to-one ratio. The breakthrough of impurity ions into the solution was shown to occur after passing 30-fold and 10-fold volumes of the model broth relative to the volume of the cation-exchange and anion-exchange resins, respectively. The dynamic exchange capacity prior to breakthrough was determined as follows: 0.35 mmol-eq/cm3 for the anion-exchange column and 1.61 mmol-eq/cm3 for the cation-exchange column. The following parameters were defined as column regeneration modes: 3-fold excess of 2 M H2SO4, 10-fold excess of distilled H2O for cation exchange; for anion exchange, 3-fold excess of 2 M NaOH and 20-fold excess of H2O.

   Conclusions. The conducted studies showed that purification of the model fermentation broth of Rhizopus oryzae can be successfully implemented using ion-exchange resins. The model fermentation broth passing successively through cation-exchange and anion-exchange columns was shown to be purified from impurities of mineral salts while maintaining the concentration of lactic acid.

About the Authors

E. V. Pikurova
Reshetnev Siberian State University of Science and Technology
Russian Federation

Elena V. Pikurova, Cand. Sci. (Chem.), Researcher

Laboratory of High-Molecular Compounds

660037; 31, pr. Imeni Gazety Krasnoyarskii Rabochii; Krasnoyarsk

Scopus Author ID 56016899300, ResearcherID D-5117-2014


Competing Interests:

The authors declare no conflict of interest



A. N. Boyandin
Reshetnev Siberian State University of Science and Technology
Russian Federation

Anatoly N. Boyandin, Cand. Sci. (Biol.), Senior Researcher

Laboratory of High-Molecular Compounds

660037; 31, pr. Imeni Gazety Krasnoyarskii Rabochii; Krasnoyarsk

Scopus Author ID 6507584996, ResearcherID H-1641-2016


Competing Interests:

The authors declare no conflict of interest



D. R. Serebryakov
Reshetnev Siberian State University of Science and Technology
Russian Federation

Dmitry R. Serebryakov, Postgraduate Student, Engineer

Laboratory of High-Molecular Compounds

660037; 31, pr. Imeni Gazety Krasnoyarskii Rabochii; Krasnoyarsk


Competing Interests:

The authors declare no conflict of interest



N. L. Ertiletskaya
Reshetnev Siberian State University of Science and Technology
Russian Federation

Natalya L. Ertiletskaya, Postgraduate Student, Junior Researcher

Laboratory of High-Molecular Compounds

660037; 31, pr. Imeni Gazety Krasnoyarskii Rabochii; Krasnoyarsk

Scopus Author ID 57781636600


Competing Interests:

The authors declare no conflict of interest



O. V. Anishchenko
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center SB RAS,”
Russian Federation

Olesya V. Anishchenko, Cand. Sci. (Biol.), Head of the Laboratory

Analytical Laboratory

660036; 50, Akademgorodok; Krasnoyarsk

Scopus Author ID 6507556442


Competing Interests:

The authors declare no conflict of interest



A. A. Sukhanova
Reshetnev Siberian State University of Science and Technology
Russian Federation

Anna A. Sukhanova, Cand. Sci. (Biol.), Senior Researcher

Laboratory of High-Molecular Compounds

660037; (31, pr. Imeni Gazety Krasnoyarskii Rabochii; Krasnoyarsk

Scopus Author ID 57292697300


Competing Interests:

The authors declare no conflict of interest



References

1. Din N.A.S., Lim S.J., Maskat M.Y., et al. Lactic acid separation and recovery from fermentation broth by ion-exchange resin : A review. Bioresour. Bioprocess. 2021;8(1):31. doi: 10.1186/s40643-021-00384-4

2. Wee Y.J., Kim J.N., Ryu H.W. Biotechnological production of lactic acid and its recent applications. Food Technol. Biotechnol. 2006;44(2):163–173.

3. Li C., Gao M., Zhu W., et al. Recent advances in the separation and purification of lactic acid from fermentation broth. Process Biochem. 2021;104:142–151. doi: 10.1016/j.procbio.2021.03.011

4. Ehsani M., Khodabakhshi K., Asgari M. Lactide synthesis optimization: investigation of the temperature, catalyst and pressure effects. e-Polymers. 2014;14(5):353–361. doi: 10.1515/epoly-2014-0055

5. Bahati D., Bricha M., Semlali A., El Mabrouk K. Preparation and characterization of poly (lactic acid)-chitosan blend fibrous electrospun membrane loaded with bioactive glass nanoparticles for guided bone/tissue regeneration. Mater. Chem. Phys. 2024;323:129637. doi: 10.1016/j.matchemphys.2024.129637

6. Nair L.S., Laurencin C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007;32(8–9):762–798. doi: 10.1016/j.progpolymsci.2007.05.017

7. Auras R., Harte B., Selke S. An Overview of Polylactides as Packaging Materials. Macromol. Biosci. 2004;4(9):835–864. doi: 10.1002/mabi.200400043

8. Jin B., Huang L.P., Lant P. Rhizopus arrhizus – a producer for simultaneous saccharification and fermentation of starch waste materials to L-(+)-lactic acid. Biotechnol. Lett. 2003;25: 1983–1987. doi: 10.1023/B:BILE.0000004389.53388.d0

9. Nyanikova G.G., Minina A., Belyaeva A.D. Influence of substratum composition on growth of fungus Rhizopus oryzae. Izvestiya Sankt Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta (tekhnicheskogo universiteta) = Bulletin of the St. Petersburg State Institute of Technology (Technical University). 2018;45(71):82–86 (in Russ.).

10. Lee H.D., Lee M.Y., Hwang Y.S., et al. Separation and Purification of Lactic Acid from Fermentation Broth Using Membrane-Integrated Separation Processes. Ind. Eng. Chem. Res. 2017;56(29):8301–8310. doi: 10.1021/acs.iecr.7b02011

11. Soto M.L., Moure A., Domínguez H., Parajó J.K. Recovery, concentration and purification of phenolic compounds by adsorption : A review. J. Food Eng. 2011;105(1):1–27. doi: 10.1016/j.jfoodeng.2011.02.010

12. Selitskii G.A., Galkin Yu.A. Purification of wastewater from heavy metal ions by sodium cation exchange. Metallurgiya i mashinostroenie. 2008;11(2):5–7 (in Russ.).

13. Saikova C.V., Pashkov G.L., Panteleeva M.V. Reaktsionno-ionoobmennye protsessy izvlecheniya tsvetnykh metallov i sinteza dispersnykh materialov (Reaction-Ion-Exchange Processes of Non-Ferrous Metals Extraction and Synthesis of Dispersed Materials). Krasnoyarsk; 2018. 198 p. (in Russ.). ISBN 978-5-7638-3856-5

14. Di N.F., Lancia A. Recovery of Tungstate from Aqueous Solutions by Ion Exchange. Ind. Eng. Chem. Res. 2007;46(21):6777–6782. doi: 10.1021/ie061691w

15. Kabay N., Demircioğlu M., Yayli S. Günay E., Yüksel M., Sağlam M., Streat M. Recovery of Uranium from Phosphoric Acid Solutions Using Chelating Ion-Exchange Resins. Ind. Eng. Chem. Res. 1998;37(5):1983–1990. doi: 10.1021/ie970518k

16. Elabd A.A., Zidan W.I., Abo-Aly M.M., et al. Uranyl ions adsorption by novel metal hydroxides loaded Amberlite IR120. J. Environ. Radioact. 2014;134:99–108. doi: 10.1016/j.jenvrad.2014.02.008

17. Lebedev K.B. (Ed.). Ionity v tsvetnoi metallurgii (Ionites in Non-Ferrous Metallurgy). Moscow: Metallurgiya; 1975. 352 p. (in Russ.).

18. Vulikh A.I. Ionoobmennyi sintez (Ion-Exchange Synthesis). Moscow: Khimiya; 1973. 231 p. (in Russ.).

19. Zhang Y., Qian Z., Liu P., Liu L., Zheng Z., Ouyang J. Efficient in situ separation and production of L-lactic acid by Bacillus coagulans using weak basic anion-exchange resin. Bioprocess Biosyst. Eng. 2018;41(2):205–212. doi: 10.1007/s00449-017-1858-z

20. Rampai T., Thitiprasert S., Boonkong W., Kodama K., Tolieng V., Thongchul N. Improved lactic acid productivity by simultaneous recovery during fermentation using resin exchanger. Asia-Pacific J. Sci. Technol. 2016;21(2):193–199. doi: 10.14456/kkurj.2016.11

21. Pradhan N., Rene E., Lens P., Dipasquale L., D’Ippolito G., Fontana A., Panico A. Adsorption behaviour of lactic acid on granular activated carbon and anionic resins: thermodynamics, isotherms and kinetic studies. Energies. 2017;10(5):665. doi: 10.3390/en10050665

22. Boonmee M., Cotano O., Amnuaypanich S., Grisadanurak N. Improved lactic acid production by in situ removal of lactic acid during fermentation and a proposed scheme for its recovery. Arab. J. Sci. Eng. 2016;41(6):2067–2075. doi: 10.1007/s13369-015-1824-5

23. González M.I., Álvarez S., Riera F.A., et al. Purification of Lactic Acid from Fermentation Broths by Ion-Exchange Resins. Ind. Eng. Chem. Res. 2006;45(9):3243–3247. doi: 10.1021/ie051263a

24. Borshchevskaya L.N., Gordeeva T.L., Kalinina A.N., et al. Spectrophotometric determination of lactic acid. J. Anal. Chem. 2016;71(8):755–758. doi: 10.1134/S1061934816080037 [Original Russian Text: Borshchevskaya L.N., Gordeeva T.L., Kalinina A.N., Sineokii S.P. Spectrophotometric determination of lactic acid. Zhurnal Analiticheskoi Khimii. 2016;71(8):787–790 (in Russ.). doi: 10.7868/S004445021608003X ]

25. Anishchenko O.V., Tolomeev A.P., Ivanova E.A., Drobotov A.V., Kolmakova A.A., Zuev I.V., Gribovskaya I.V. Accumulation of elements by submerged (Stuckenia pectinate (L.) Börner) and emergent (Phragmites australis (Cav.) Trin. ex Steud.) macrophytes under different salinity levels. Plant Physiol. Biochem. 2020;154:328–340. doi: 10.1016/j.plaphy.2020.05.019

26. Kokotov Yu.A. Ionity i ionnyi obmen (Ionites and Ion Exchange). Leningrad: Khimiya; 1980. 150 p. (in Russ.).


Review

For citations:


Pikurova E.V., Boyandin A.N., Serebryakov D.R., Ertiletskaya N.L., Anishchenko O.V., Sukhanova A.A. Use of ion-exchange resins for purification of L-lactic acid-containing Rhizopus oryzae fermentation broth. Fine Chemical Technologies. 2025;20(3):223-236. https://doi.org/10.32362/2410-6593-2025-20-3-223-236. EDN: HJIVQS

Views: 75


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)