Preview

Fine Chemical Technologies

Advanced search

Determination of the enthalpy of evaporation of pentaerythritol esters of various structures using gas chromatographic retention characteristics

https://doi.org/10.32362/2410-6593-2025-20-3-203-214

EDN: VFQXIM

Abstract

   Objectives. The work set out to prepare and chromatographically analyze pentaerythritol esters, use gas chromatography to determine the Kováts logarithmic retention indices and enthalpies of sorption, and evaluate the enthalpy of evaporation of pentaerythritol tetraesters based on linear correlations with enthalpies of sorption and logarithmic retention indices.

   Methods. The synthesis was carried out in an isothermal stirred reactor at T = 393.2 K at a molar ratio of pentaerythritol to carboxy lic acid of 1 : 4 in self-catalysis mode to avoid side reactions that occur during aggressive acid catalysis. The obtained samples were analyzed using Chromatec Analytic hardware and software complex based on a Kristall-2000M chromatograph equipped with a capillary column (60 m × 0.32 mm × 0.5 μm) having BP-1 grafted stationary phase (100 % dimethylpolysiloxane). The analysis conditions were as follows: isothermal mode; column temperature, 433.2–603.2 K; evaporator and detector temperatures, 623.2 K; gas flow split, 1 : 50; carrier gas, helium; volume of injected sample, 0.15 µL; diluent of reaction samples, methanol.

   Results. For the first time, the values of the Kováts retention indices and enthalpies of sorption were found for 31 pentaerythritol esters of various structures (mono-, di-, tri-, and tetramethanoates; 2-methylpentanoates; 4-methylpentanoates; 2,2-dimethylbutanoates; 2-ethylbutanoates; octanoates; nanoates; and decanoates). The obtained correlation equations were used to estimate the enthalpy of evaporation of pentaerythritol tetraesters (for 7 compounds, data were obtained for the first time).

   Conclusions. The retention parameters were found as linear dependencies with a high degree of correlation (R2 > 0.99) in the studied temperature range (433.2–603.2 K). The enthalpies of evaporation calculated based on the enthalpies of sorption and logarithmic retention indices within the limits of error of the correlation dependencies coincide with the literature data and the values predicted by the quantitative structure–property relationship method. The obtained data can be used to design units for separating multicomponent mixtures and identify these compounds.

About the Authors

Yu. F. Ivanova
Samara State Technical University
Russian Federation

Yulia F. Ivanova, Postgraduate Student

Technology of Organic and Petrochemical Synthesis Department

443100; 244, Molodogvardeyskaya ul.; Samara

Scopus Author ID 59668481900


Competing Interests:

The authors declare that they have no conflicts of interest that require disclosure in this article



V. V. Emelyanov
Samara State Technical University
Russian Federation

Vladimir V. Emelyanov, Cand. Sci. (Chem.), Associate Professor

Technology of Organic and Petrochemical Synthesis Department

443100; 244, Molodogvardeyskaya ul.; Samara

Scopus Author ID 57219254675


Competing Interests:

The authors declare that they have no conflicts of interest that require disclosure in this article



S. V. Levanova
Samara State Technical University
Russian Federation

Svetlana V. Levanova, Dr. Sci. (Chem.), Professor, Honored Scientist of the Russian Federation, Professor

Technology of Organic and Petrochemical Synthesis Department

443100; 244, Molodogvardeyskaya ul.; Samara

Scopus Author ID 6701876379, ResearcherID D-6065-2014


Competing Interests:

The authors declare that they have no conflicts of interest that require disclosure in this article



Yu. N. Telnov
Samara State Technical University
Russian Federation

Yuri N. Telnov, Master Student

443100; 244, Molodogvardeyskaya ul.; Samara


Competing Interests:

The authors declare that they have no conflicts of interest that require disclosure in this article



References

1. Howell B.A., Alrubayyi A., Ostrander E.A. Thermal properties of charring plasticizers from the biobased alcohols, pentaerythritol and 3,5-dihydroxybenzoic acid. J. Therm. Anal. Calorim. 2019;138(25):2661–2668. doi: 10.1007/s10973-019-08311-8

2. Piskarev V.V., Viktorova E.A. Modern alkyd paints, their properties, composition, use in design and range of applications. Vestnik Kazanskogo tekhnologicheskogo universiteta = Herald of Kazan Technological University. 2014;17(17):89–91 (in Russ.).

3. Minyaeva O.A., Kupriyanova N.P., Grigorieva U.A. Effect of nonionic surfactants as emulsifiers on the melting temperature of soft medicinal forms basis. Sovremennye problemy nauki i obrazovaniya = Modern Problems of Science and Education. 2015;1(1):1978 (in Russ.).

4. Kurganov A.A., Victorova E.P., Kanateva E.Yu. Monolithic capillary columns based on pentaerythritol acrylates for molecular-size-based separations of synthetic polymers. J. Sep. Sci. 2015;38(13):2223–2228. doi: 10.1002/jssc.201500211

5. Kucherenko E.V., Melnik D.M., Korolev A.A., et al. Monolithic Capillary Columns Based on Pentaerythritol Tetraacrylate for Peptide Analysis. Russ. J. Phys. Chem. A. 2015; 89(9): 1688–1692. doi: 10.7868/S0044453715090198 [Original Russian Text: Kucherenko E.V., Melnik D.M., Korolev A.A., Kanateva A.Yu., Pirogov A.V., Kurganov A.A. Monolithic Capillary Columns Based on Pentaerythritol Tetraacrylate for Peptide Analysis. Zhurnal Fizicheskoi Khimii. 2015;89(9):1478–1483 (in Russ.). doi: 10.7868/S0044453715090198 ]

6. Tonkonogov B.P., Popova K.A., Hurumova A.F. Perspective of using esters as a national production as bases of oils for the aircraft equipment. Trudy Rossiiskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina = Proceedings of Gubkin University. 2015;278(1):109–120 (in Russ.).

7. Silman A.V., Niyazbakiev I.I., Smirnova Yu.K. Phthalate-free plasticizers. In: Modern Scientific Research: Problems and Solutions : A collection of materials of the International Scientific and Practical Conference. St. Petersburg; 2020. P. 59–62 (in Russ.).

8. Wypych G. Handbook of Plasticizers: 2<sup>nd</sup> ed. Toronto: Chemtech Publishing; 2012. 748 p.

9. Ryzhkin D.A., Raeva V.M. Comparison of methods for calculating the enthalpy of vaporization of binary azeotropic mixtures. Fine Chem. Technol. 2024;19(4):279–292. doi: 10.32362/2410-6593-2024-19-4-279-292

10. Krasnykh E.L., Druzhinina Y.A., Portnova S.V., Smirnova Y.A. Vapor pressure and enthalpy of vaporization of trimethylolpropane and carboxylic acids esters. Fluid Phase Equilib. 2018;462:111–117. doi: 10.1016/j.fluid.2018.01.018

11. Nesterova T.N., Nazmutdinov A.G., Tsvetkov V.S., Rozhnov A.M., Roshchupkina I.Yu. Vapour pressures and enthalpies of vaporization of alkylphenols. J. Chem. Thermodyn. 1990;22(4):365–377. doi: 10.1016/0021-9614(90)90122-7

12. Wu E., Sinha S., Yang C., Zhang M., Acree W.E. Abraham Solvation Parameter Model: Calculation of L Solute Descriptors for Large C<sub>11</sub> to C<sub>42</sub> Methylated Alkanes from Measured Gas–Liquid Chromatographic Retention Data. Liquids. 2022;2(3):85–105. doi: 10.3390/liquids2030007

13. Zenkevich I.G., Olisov D.A. Effects of the Discrimination of Sample Composition with the Use of Split Injection into Gas Chromatographic Capillary Columns. J. Anal. Chem. 2019;74(Suppl 1):32–38. doi: 10.1134/S1061934819070190 [Original Russian Text: Zenkevich I.G., Olisov D.A. Effects of the Discrimination of Sample Composition with the Use of Split Injection into Gas Chromatographic Capillary Columns. Zhurnal Analiticheskoi Khimii. 2019;74(7):40–47 (in Russ.). doi: 10.1134/S0044450219070223 ]

14. Zenkevich I.G., Pavlovskii A.A. Anomalous temperature dependence of gas chromatographic retention indices of polar compounds on nonpolar phases. Russ. J. Phys. Chem. A. 2016;90(5):1074–1080. doi: 10.1134/S0036024416040336 [Original Russian Text: Zenkevich I.G., Pavlovskii A.A. Anomalous temperature dependence of gas chromatographic retention indices of polar compounds on nonpolar phases. Zhurnal Fizicheskoi Khimii. 2016;90(5):792–799 (in Russ.). doi: 10.7868/S0044453716040348 ]

15. Portnova S.V., Yamshchikova Y.F., Krasnykh E.L. Retention Characteristics and Sorption Enthalpies of Esters of Natural Hydroxycarboxylic Acids on DB-1 Stationary Phase. Russ. J. Phys. Chem. A. 2019;93(3):577–583. doi: 10.1134/S0036024419020213 [Original Russian Text: Portnova S.V., Yamshchikova Y.F., Krasnykh E.L. Retention Characteristics and Sorption Enthalpies of Esters of Natural Hydroxycarboxylic Acids on DB-1 Stationary Phase. Zhurnal Fizicheskoi Khimii. 2019;93(3):464–5470 (in Russ.). doi: 10.1134/S0044453719020225 ]

16. Krasnykh E.L., Portnova S.V. Prediction of changes in the heat capacity of the liquid–vapor phase transition based on modified Randič indices. Alkanes and oxygen-containing compounds. J. Struct. Chem. 2017;58(4):706–711. doi: 10.1134/S0022476617040096 [Original Russian Text: Krasnykh E.L., Portnova S.V. Prediction of changes in the heat capacity of the liquid–vapor phase transition based on modified Randič indices. Alkanes and oxygen-containing compounds. Zhurnal Strukturnoi Khimii. 2017;58(4):739–744 (in Russ.). doi: 10.15372/JSC20170409 ]

17. Emel’yanov V.V., Krasnykh E.L., Portnova S.V. Retention indices and sorption enthalpies of pentaerythritol and C<sub>2</sub> –C<sub>8</sub> acid esters on nonpolar stationary phases. Russ. J. Phys. Chem. A. 2020;94(10):2168–2176. doi: 10.1134/S003602442010009X [Original Russian Text: Emel’yanov V.V., Krasnykh E.L., Portnova S.V. Retention indices and sorption enthalpies of pentaerythritol and C<sub>2</sub> –C<sub>8</sub> acid esters on nonpolar stationary phases. Zhurnal Fizicheskoi Khimii. 2020;94(10):1567–1575 (in Russ.). doi: 10.31857/S004445372010009X ]

18. Emel’ianov V.V., Krasnykh E.L., Portnova S.V., Levanova S.V. Synthetic oils based on pentaerythritol esters. Vapor pressure and enthalpy of vaporization. Fuel. 2022;312:122908. doi: 10.1016/j.fuel.2021.122908

19. Krasnykh E.L., Portnova S.V. Prediction of enthalpies of vaporization based on modified Randič indices. Esters. J. Struct. Chem. 2016;57(3):437–445. doi: 10.1134/S0022476616030033 [Original Russian Text: Krasnykh E.L., Portnova S.V. Prediction of enthalpies of vaporization based on modified Randič indices. Esters. Zhurnal Strukturnoi Khimii. 2016;57(3):466–474 (in Russ.). doi: 10.15372/JSC20160303 ]

20. Razzouk A., Mokbel I., García J., Fernandez J., Msakni N., Jose J. Vapor pressure measurements in the range 10<sup>-5</sup> Pa to 1 Pa of four pentaerythritol esters. Density and vapor–liquid equilibria modeling of ester lubricants. Fluid Phase Equilib. 2007;260(2):248–261. doi: 10.1016/j.fluid.2007.07.029


Review

For citations:


Ivanova Yu.F., Emelyanov V.V., Levanova S.V., Telnov Yu.N. Determination of the enthalpy of evaporation of pentaerythritol esters of various structures using gas chromatographic retention characteristics. Fine Chemical Technologies. 2025;20(3):203-214. https://doi.org/10.32362/2410-6593-2025-20-3-203-214. EDN: VFQXIM

Views: 70


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)