Preview

Fine Chemical Technologies

Advanced search

Analysis of the ion mobility spectra of chloroacetophenone, tris(2-chloroethyl)amine, and methanethiol

https://doi.org/10.32362/2410-6593-2024-19-5-462-478

EDN: YSOENJ

Abstract

Objectives. To determine the ion mobilities of chloroacetophenone, tris(2-chloroethyl)amine, and methanethiol; the structure of ions corresponding to characteristic signals; the detection limits of chloroacetophenone, tris(2-chloroethyl)amine, and methanethiol with the Kerber-T ion drift detector and the Segment automatic stationary gas detector.
Methods. Ion mobility spectrometry was used in order to determine the ion mobilities and detect analytes. The enthalpies of reactions of ion formation were calculated using the ORCA 4.1.1 software by means of the B3LYP density functional method with the 6-31G(d,p) basis set.
Results. The ion mobilities of chloroacetophenone, tris(2-chloroethyl)amine, and methanethiol were determined. A method for recording ion mobility spectra and their mathematical processing was developed. The dependencies of the change in ion mobility spectra on the analyte concentration were also studied. Possible mechanisms were proposed for the formation of the ion mobility spectra observed, in accordance with the ionization features of chloroacetophenone, tris(2-chloroethyl)amine, and methanethiol. The enthalpies of ion formation were calculated. The ionization schemes of the compounds were shown. The generalized results of experimental studies were presented, as were the features of compound identification taking into account the structure of the spectra, the concentrations of substances, and the detection conditions.
Conclusions. Characteristic signals of chloroacetophenone, tris(2-chloroethyl)amine, and methanethiol were identified. All studied hazardous substances can be detected with an ion mobility spectrometer at concentrations at the ppm level. The following detection limits of the substances were determined with the Segment gas detector: chloroacetophenone, 245 mg/m3; tris(2-chloroethyl)amine, 0.01 mg/m3; and methanethiol, 0.8 mg/m3.

About the Authors

D. A. Aleksandrova
Mendeleev University of Chemical Technology of Russia; Modus
Russian Federation

Daria A. Aleksandrova, Postgraduate Student, Department of Expertise in Doping and Drug Control; Chemical Engineer

9, Miusskaya pl., Moscow, 1125047

56-2, Varshavskoe sh., Moscow, 117638

Scopus Author ID 57208706352


Competing Interests:

The authors declare no conflicts of interest



T. B. Melamed
Mendeleev University of Chemical Technology of Russia
Russian Federation

Tatiana B. Melamed, Master Student, Department of Expertise in Doping and Drug Control

9, Miusskaya pl., Moscow, 1125047


Competing Interests:

The authors declare no conflicts of interest



E. P. Baberkina
Mendeleev University of Chemical Technology of Russia
Russian Federation

Elena P. Baberkina, Cand. Sci. (Chem.), Associate Professor, Department of Expertise in Doping and Drug Control

9, Miusskaya pl., Moscow, 1125047

Scopus Author ID 56636782900


Competing Interests:

The authors declare no conflicts of interest



E. S. Osinova
Mendeleev University of Chemical Technology of Russia
Russian Federation

Ekaterina S. Osinova, Postgraduate Student, Department of Expertise in Doping and Drug Control

9, Miusskaya pl., Moscow, 1125047


Competing Interests:

The authors declare no conflicts of interest



L. A. Luzenina
Mendeleev University of Chemical Technology of Russia
Russian Federation

Lidiya A. Luzenina, Student

9, Miusskaya pl., Moscow, 1125047


Competing Interests:

The authors declare no conflicts of interest



A. A. Kaplin
Mendeleev University of Chemical Technology of Russia
Russian Federation

Artem A. Kaplin, Student

9, Miusskaya pl., Moscow, 1125047


Competing Interests:

The authors declare no conflicts of interest



R. V. Yakushin
Mendeleev University of Chemical Technology of Russia
Russian Federation

Roman V. Yakushin, Cand. Sci. (Eng.), Associate Professor, Department of Organic Chemistry, Dean of the Faculty of Chemical and Pharmaceutical Technologies and Biomedical Products

9, Miusskaya pl., Moscow, 1125047

Scopus Author ID 56974245100

ResearcherID A-5116-2014


Competing Interests:

The authors declare no conflicts of interest



A. E. Kovalenko
Mendeleev University of Chemical Technology of Russia
Russian Federation

Aleksey E. Kovalenko, Cand. Sci. (Eng.), Associate Professor, Department of Expertise in Doping and Drug Control

9, Miusskaya pl., Moscow, 1125047

Scopus Author ID 57208702823


Competing Interests:

The authors declare no conflicts of interest



G. V. Tsaplin
Mendeleev University of Chemical Technology of Russia
Russian Federation

Grigory V. Tsaplin, Assistant, Department of Chemistry and Technology of Organic Synthesis

9, Miusskaya pl., Moscow, 1125047

Scopus Author ID 57202814506


Competing Interests:

The authors declare no conflicts of interest



Yu. B. Sinkevich
Mendeleev University of Chemical Technology of Russia
Russian Federation

Yuri B. Sinkevich, Training Master, Department of Chemistry and Technology of Organic Synthesis

9, Miusskaya pl., Moscow, 1125047

Scopus Author ID 16029689600


Competing Interests:

The authors declare no conflicts of interest



A. A. Fenin
Mendeleev University of Chemical Technology of Russia
Russian Federation

Anatoliy A. Fenin, Senior Lecturer, Department of High Energy Chemistry and Radioecology

9, Miusskaya pl., Moscow, 1125047

Scopus Author ID 16202751400

ResearcherID T-9318-2017


Competing Interests:

The authors declare no conflicts of interest



J. R. Shaltaeva
National Research Nuclear University “MEPHI”
Russian Federation

Julia R. Shaltaeva, Senior Lecturer, Division of Nanotechnologies in Electronics, Spintronics and Photonics, Office of Academic Programs (414), Institute of Nanoengineering in Electronics, Spintronics and Photonics

31, Kashirskoe sh., Moscow, 115409

Scopus Author ID 56018762000


Competing Interests:

The authors declare no conflicts of interest



V. V. Belyakov
National Research Nuclear University “MEPHI”
Russian Federation

Vladimir V. Belyakov, Cand. Sci. (Eng.), Associate Professor, Division of Nanotechnologies in Electronics, Spintronics and Photonics, Office of Academic Programs (414), Institute of Nanoengineering in Electronics, Spintronics and Photonics

31, Kashirskoe sh., Moscow, 115409

Scopus Author ID 7103252626


Competing Interests:

The authors declare no conflicts of interest



A. O. Shablya
Mendeleev University of Chemical Technology of Russia; Modus
Russian Federation

Aleksey O. Shablya, Deputy General Director

56-2, Varshavskoe sh., Moscow, 117638


Competing Interests:

The authors declare no conflicts of interest



A. G. Sazonov
Modus
Russian Federation

Andrey G. Sazonov, General Director

56-2, Varshavskoe sh., Moscow, 117638


Competing Interests:

The authors declare no conflicts of interest



References

1. Mäkinen M.A., Anttalainen O.A., Sillanpää M.E. Ion mobility spectrometry and its applications in detection of chemical warfare agents. Anal. Chem. 2010;82(23):9594–9600. https://doi.org/10.1021/ac100931n

2. Yamaguchi S., Asada R., Kishi Sh., Sekioka R., Kitagawa N., Tokita K., Yamamoto S., Seto Y. Detection performance of a portable ion mobility spectrometer with 63Ni radioactive ionization for chemical warfare agents. Forensic Toxicol. 2010;28(2):84–95. https://doi.org/10.1007/s11419-010-0092-z

3. Hernandez-Mesa M., Ropartz D., Garcia-Campana A.M., Rogniaux H., Dervilly-Pinel G., Le Bizec B. Ion mobility spectrometry in food analysis: Principles, current applications and future trends. Molecules. 2019;24(15):2706. https://doi.org/10.3390/molecules24152706

4. Jafari M.T., Khayamian T., Shaer V., Zarei N. Determination of veterinary drug residues in chicken meat using corona discharge ion mobility spectrometry. Anal. Chim. Acta. 2007;581(1): 147–153. https://doi.org/10.1016/j.aca.2006.08.005

5. Hashemian Z., Mardihallaj A., Khayamian T. Analysis of biogenic amines using corona discharge ion mobility spectrometry. Talanta. 2010;81(3):1081–1087. https://doi.org/10.1016/j.talanta.2010.02.001

6. Allers M., Schaefer Ch., Ahrens A., Schlottmann F., Hitzemann M., Kobelt T., Zimmermann S., Hetzer R. Detection of volatile toxic industrial chemicals with classical ion mobility spectrometry and high-kinetic energy ion mobility spectrometry. Anal. Chem. 2022;94(2):1211−1220. https://doi.org/10.1021/acs.analchem.1c04397

7. Смолин Ю.М., Кобцев Б.Н., Новоселов Н.П. Метод спектрометрии ионной подвижности для обнаружения химических загрязнений окружающей среды. Вестник ТГТУ. 2009;15(3):620–628.

8. Krylova N., Krylov E., Eiceman G.A., Stone J.A. Effect of moisture on the field dependency of mobility for gas-phase ions of organophosphorus compounds at atmospheric pressure with field asymmetric ion mobility spectrometry. J. Phys. Chem. A. 2003;107(19):3648–3654. https://doi.org/10.1021/jp0221136

9. Eiceman G.A., Kapras Z., Hill H.H. Ion Mobility Spectrometry. 3rd ed. Boca Raton: CRC Press; 2014. 444 p.

10. Borsdorf H., Eiceman G.A. Ion mobility spectrometry: Principles and applications. Appl. Spectroscopy Rev. 2006;41(4): 323–375. https://doi.org/10.1080/05704920600663469

11. Marquez-Sillero I., Aguilera-Herrador E., Cardenas S., Valcarcel M. Ion-mobility spectrometry for environmental analysis. TrAC Trends in Analytical Chemistry. 2011;30(5): 677–690. https://doi.org/10.1016/j.trac.2010.12.007

12. Александрова Д.А., Меламед Т.Б., Баберкина Е.П., Коваленко А.Е., Кузнецов Вл. Вит., Кузнецов Вит. Вл., Фенин А.А., Шалтаева Ю.Р., Беляков В.В. Спектрометрия ионной подвижности имидазола и возможности его определения. Журн. аналит. химии. 2021;76(11):989–996. https://doi.org/10.31857/S0044450221110025

13. Александрова Д.А., Меламед Т.Б., Баберкина Е.П., Фенин А.А., Осинова Е.С., Коваленко А.Е., Якушин Р.В., Шалтаева Ю.Р., Беляков В.В., Зыкова Д.И. Спектрометрия ионной подвижности N-метилимидазола и возможности его определения. Тонкие Химические Технологии. 2021;16(6):512–525. https://doi.org/10.32362/2410-6593-2021-16-6-512-525


Supplementary files

1. Ion mobility spectra of chloroacetophenone recorded with Kerber-T IDD in positive polarity
Subject
Type Research Instrument
View (72KB)    
Indexing metadata ▾
  • Characteristic signals of chloroacetophenone, tris(2-chloroethyl)amine, and methanethiol were identified.
  • All studied hazardous substances can be detected with an ion mobility spectrometer at concentrations at the ppm level.
  • The following detection limits of the substances were determined with the Segment gas detector: chloroacetophenone, 245 mg/m3; tris(2-chloroethyl)amine, 0.01 mg/m3; and methanethiol, 0.8 mg/m3.

Review

For citations:


Aleksandrova D.A., Melamed T.B., Baberkina E.P., Osinova E.S., Luzenina L.A., Kaplin A.A., Yakushin R.V., Kovalenko A.E., Tsaplin G.V., Sinkevich Yu.B., Fenin A.A., Shaltaeva J.R., Belyakov V.V., Shablya A.O., Sazonov A.G. Analysis of the ion mobility spectra of chloroacetophenone, tris(2-chloroethyl)amine, and methanethiol. Fine Chemical Technologies. 2024;19(5):462-478. https://doi.org/10.32362/2410-6593-2024-19-5-462-478. EDN: YSOENJ

Views: 321


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)