Analysis of the ion mobility spectra of chloroacetophenone, tris(2-chloroethyl)amine, and methanethiol
https://doi.org/10.32362/2410-6593-2024-19-5-462-478
EDN: YSOENJ
Abstract
Objectives. To determine the ion mobilities of chloroacetophenone, tris(2-chloroethyl)amine, and methanethiol; the structure of ions corresponding to characteristic signals; the detection limits of chloroacetophenone, tris(2-chloroethyl)amine, and methanethiol with the Kerber-T ion drift detector and the Segment automatic stationary gas detector.
Methods. Ion mobility spectrometry was used in order to determine the ion mobilities and detect analytes. The enthalpies of reactions of ion formation were calculated using the ORCA 4.1.1 software by means of the B3LYP density functional method with the 6-31G(d,p) basis set.
Results. The ion mobilities of chloroacetophenone, tris(2-chloroethyl)amine, and methanethiol were determined. A method for recording ion mobility spectra and their mathematical processing was developed. The dependencies of the change in ion mobility spectra on the analyte concentration were also studied. Possible mechanisms were proposed for the formation of the ion mobility spectra observed, in accordance with the ionization features of chloroacetophenone, tris(2-chloroethyl)amine, and methanethiol. The enthalpies of ion formation were calculated. The ionization schemes of the compounds were shown. The generalized results of experimental studies were presented, as were the features of compound identification taking into account the structure of the spectra, the concentrations of substances, and the detection conditions.
Conclusions. Characteristic signals of chloroacetophenone, tris(2-chloroethyl)amine, and methanethiol were identified. All studied hazardous substances can be detected with an ion mobility spectrometer at concentrations at the ppm level. The following detection limits of the substances were determined with the Segment gas detector: chloroacetophenone, 245 mg/m3; tris(2-chloroethyl)amine, 0.01 mg/m3; and methanethiol, 0.8 mg/m3.
Keywords
About the Authors
D. A. AleksandrovaRussian Federation
Daria A. Aleksandrova, Postgraduate Student, Department of Expertise in Doping and Drug Control; Chemical Engineer
9, Miusskaya pl., Moscow, 1125047
56-2, Varshavskoe sh., Moscow, 117638
Scopus Author ID 57208706352
Competing Interests:
The authors declare no conflicts of interest
T. B. Melamed
Russian Federation
Tatiana B. Melamed, Master Student, Department of Expertise in Doping and Drug Control
9, Miusskaya pl., Moscow, 1125047
Competing Interests:
The authors declare no conflicts of interest
E. P. Baberkina
Russian Federation
Elena P. Baberkina, Cand. Sci. (Chem.), Associate Professor, Department of Expertise in Doping and Drug Control
9, Miusskaya pl., Moscow, 1125047
Scopus Author ID 56636782900
Competing Interests:
The authors declare no conflicts of interest
E. S. Osinova
Russian Federation
Ekaterina S. Osinova, Postgraduate Student, Department of Expertise in Doping and Drug Control
9, Miusskaya pl., Moscow, 1125047
Competing Interests:
The authors declare no conflicts of interest
L. A. Luzenina
Russian Federation
Lidiya A. Luzenina, Student
9, Miusskaya pl., Moscow, 1125047
Competing Interests:
The authors declare no conflicts of interest
A. A. Kaplin
Russian Federation
Artem A. Kaplin, Student
9, Miusskaya pl., Moscow, 1125047
Competing Interests:
The authors declare no conflicts of interest
R. V. Yakushin
Russian Federation
Roman V. Yakushin, Cand. Sci. (Eng.), Associate Professor, Department of Organic Chemistry, Dean of the Faculty of Chemical and Pharmaceutical Technologies and Biomedical Products
9, Miusskaya pl., Moscow, 1125047
Scopus Author ID 56974245100
ResearcherID A-5116-2014
Competing Interests:
The authors declare no conflicts of interest
A. E. Kovalenko
Russian Federation
Aleksey E. Kovalenko, Cand. Sci. (Eng.), Associate Professor, Department of Expertise in Doping and Drug Control
9, Miusskaya pl., Moscow, 1125047
Scopus Author ID 57208702823
Competing Interests:
The authors declare no conflicts of interest
G. V. Tsaplin
Russian Federation
Grigory V. Tsaplin, Assistant, Department of Chemistry and Technology of Organic Synthesis
9, Miusskaya pl., Moscow, 1125047
Scopus Author ID 57202814506
Competing Interests:
The authors declare no conflicts of interest
Yu. B. Sinkevich
Russian Federation
Yuri B. Sinkevich, Training Master, Department of Chemistry and Technology of Organic Synthesis
9, Miusskaya pl., Moscow, 1125047
Scopus Author ID 16029689600
Competing Interests:
The authors declare no conflicts of interest
A. A. Fenin
Russian Federation
Anatoliy A. Fenin, Senior Lecturer, Department of High Energy Chemistry and Radioecology
9, Miusskaya pl., Moscow, 1125047
Scopus Author ID 16202751400
ResearcherID T-9318-2017
Competing Interests:
The authors declare no conflicts of interest
J. R. Shaltaeva
Russian Federation
Julia R. Shaltaeva, Senior Lecturer, Division of Nanotechnologies in Electronics, Spintronics and Photonics, Office of Academic Programs (414), Institute of Nanoengineering in Electronics, Spintronics and Photonics
31, Kashirskoe sh., Moscow, 115409
Scopus Author ID 56018762000
Competing Interests:
The authors declare no conflicts of interest
V. V. Belyakov
Russian Federation
Vladimir V. Belyakov, Cand. Sci. (Eng.), Associate Professor, Division of Nanotechnologies in Electronics, Spintronics and Photonics, Office of Academic Programs (414), Institute of Nanoengineering in Electronics, Spintronics and Photonics
31, Kashirskoe sh., Moscow, 115409
Scopus Author ID 7103252626
Competing Interests:
The authors declare no conflicts of interest
A. O. Shablya
Russian Federation
Aleksey O. Shablya, Deputy General Director
56-2, Varshavskoe sh., Moscow, 117638
Competing Interests:
The authors declare no conflicts of interest
A. G. Sazonov
Russian Federation
Andrey G. Sazonov, General Director
56-2, Varshavskoe sh., Moscow, 117638
Competing Interests:
The authors declare no conflicts of interest
References
1. Mäkinen M.A., Anttalainen O.A., Sillanpää M.E. Ion mobility spectrometry and its applications in detection of chemical warfare agents. Anal. Chem. 2010;82(23):9594–9600. https://doi.org/10.1021/ac100931n
2. Yamaguchi S., Asada R., Kishi Sh., Sekioka R., Kitagawa N., Tokita K., Yamamoto S., Seto Y. Detection performance of a portable ion mobility spectrometer with 63Ni radioactive ionization for chemical warfare agents. Forensic Toxicol. 2010;28(2):84–95. https://doi.org/10.1007/s11419-010-0092-z
3. Hernandez-Mesa M., Ropartz D., Garcia-Campana A.M., Rogniaux H., Dervilly-Pinel G., Le Bizec B. Ion mobility spectrometry in food analysis: Principles, current applications and future trends. Molecules. 2019;24(15):2706. https://doi.org/10.3390/molecules24152706
4. Jafari M.T., Khayamian T., Shaer V., Zarei N. Determination of veterinary drug residues in chicken meat using corona discharge ion mobility spectrometry. Anal. Chim. Acta. 2007;581(1): 147–153. https://doi.org/10.1016/j.aca.2006.08.005
5. Hashemian Z., Mardihallaj A., Khayamian T. Analysis of biogenic amines using corona discharge ion mobility spectrometry. Talanta. 2010;81(3):1081–1087. https://doi.org/10.1016/j.talanta.2010.02.001
6. Allers M., Schaefer Ch., Ahrens A., Schlottmann F., Hitzemann M., Kobelt T., Zimmermann S., Hetzer R. Detection of volatile toxic industrial chemicals with classical ion mobility spectrometry and high-kinetic energy ion mobility spectrometry. Anal. Chem. 2022;94(2):1211−1220. https://doi.org/10.1021/acs.analchem.1c04397
7. Смолин Ю.М., Кобцев Б.Н., Новоселов Н.П. Метод спектрометрии ионной подвижности для обнаружения химических загрязнений окружающей среды. Вестник ТГТУ. 2009;15(3):620–628.
8. Krylova N., Krylov E., Eiceman G.A., Stone J.A. Effect of moisture on the field dependency of mobility for gas-phase ions of organophosphorus compounds at atmospheric pressure with field asymmetric ion mobility spectrometry. J. Phys. Chem. A. 2003;107(19):3648–3654. https://doi.org/10.1021/jp0221136
9. Eiceman G.A., Kapras Z., Hill H.H. Ion Mobility Spectrometry. 3rd ed. Boca Raton: CRC Press; 2014. 444 p.
10. Borsdorf H., Eiceman G.A. Ion mobility spectrometry: Principles and applications. Appl. Spectroscopy Rev. 2006;41(4): 323–375. https://doi.org/10.1080/05704920600663469
11. Marquez-Sillero I., Aguilera-Herrador E., Cardenas S., Valcarcel M. Ion-mobility spectrometry for environmental analysis. TrAC Trends in Analytical Chemistry. 2011;30(5): 677–690. https://doi.org/10.1016/j.trac.2010.12.007
12. Александрова Д.А., Меламед Т.Б., Баберкина Е.П., Коваленко А.Е., Кузнецов Вл. Вит., Кузнецов Вит. Вл., Фенин А.А., Шалтаева Ю.Р., Беляков В.В. Спектрометрия ионной подвижности имидазола и возможности его определения. Журн. аналит. химии. 2021;76(11):989–996. https://doi.org/10.31857/S0044450221110025
13. Александрова Д.А., Меламед Т.Б., Баберкина Е.П., Фенин А.А., Осинова Е.С., Коваленко А.Е., Якушин Р.В., Шалтаева Ю.Р., Беляков В.В., Зыкова Д.И. Спектрометрия ионной подвижности N-метилимидазола и возможности его определения. Тонкие Химические Технологии. 2021;16(6):512–525. https://doi.org/10.32362/2410-6593-2021-16-6-512-525
Supplementary files
|
1. Ion mobility spectra of chloroacetophenone recorded with Kerber-T IDD in positive polarity | |
Subject | ||
Type | Research Instrument | |
View
(72KB)
|
Indexing metadata ▾ |
- Characteristic signals of chloroacetophenone, tris(2-chloroethyl)amine, and methanethiol were identified.
- All studied hazardous substances can be detected with an ion mobility spectrometer at concentrations at the ppm level.
- The following detection limits of the substances were determined with the Segment gas detector: chloroacetophenone, 245 mg/m3; tris(2-chloroethyl)amine, 0.01 mg/m3; and methanethiol, 0.8 mg/m3.
Review
For citations:
Aleksandrova D.A., Melamed T.B., Baberkina E.P., Osinova E.S., Luzenina L.A., Kaplin A.A., Yakushin R.V., Kovalenko A.E., Tsaplin G.V., Sinkevich Yu.B., Fenin A.A., Shaltaeva J.R., Belyakov V.V., Shablya A.O., Sazonov A.G. Analysis of the ion mobility spectra of chloroacetophenone, tris(2-chloroethyl)amine, and methanethiol. Fine Chemical Technologies. 2024;19(5):462-478. https://doi.org/10.32362/2410-6593-2024-19-5-462-478. EDN: YSOENJ