1. Ragushina M.D., Evseeva K.A., Kalugina E.V., Ushakova O.B. Polymer composite materials with electrically conductive antistatic properties. Plasticheskie Massy. 2021;(3-4):6-9 (in Russ.). https://doi.org/10.35164/0554-2901-2021-3-4-6-9
2. Bregman A., Taub A., Michielssen E. Computational design of composite EMI shields through the control of pore morphology. MRS Communications. 2018;8(3):1153-1157. https://doi.org/10.1557/mrc.2018.171
3. Chen J., Zhu Y., Huang J., Zhang J., Pan D., Zhou J., Ryu J., Umar A., Guo Z. Advances in Responsively Conductive Polymer Composites and Sensing Applications. Polym. Rev. 2021;61(1):157-193. https://doi.org/10.1080/15583724.2020.1734818
4. Chen L., Zhang J. Designs of conductive polymer composites with exceptional reproducibility of positive temperature coefficient effect: A review. J. Appl. Polym. Sci. 2021;138(3):49677. https://doi.org/10.1002/app.49677
5. Zhang P., Wang B. Positive temperature coefficient effect and mechanism of compatible LLDPE/HDPE composites doping conductive graphite powders. J. Appl. Polym. Sci. 2018;135(27):46453. https://doi.org/10.1002/app.46453
6. Zhang C., Ma C.A., Wang P., Sumita M. Temperature dependence of electrical resistivity for carbon black filled ultra-high molecular weight polyethylene composites prepared by hot compaction. Carbon. 2005;43(12):2544-2553. https://doi.org/10.1016/j.carbon.2005.05.006
7. Shen L., Wang F.Q., Yang H., Meng Q.R. The combined effects of carbon black and carbon fiber on the electrical properties of composites based on polyethylene or polyethylene/polypropylene blend. Polym. Test. 2011;30(4):442-448. https://doi.org/10.1016/j.polymertesting.2011.03.007
8. Markov V.A., Kandyrin L.B., Markov A.V. The effect of deformation on the electrical resistance of composites based on polyethylene and carbon black. Konstruktsii iz kompozitsionnykh materialov = Composite Materials Constructions. 2013;4:40-44 (in Russ.).
9. Markov A.V., Tarasova K.S., Markov V.A. Effect of relaxation processes during deformation on electrical resistivity of carbon black polypropylene composites. Tonk. Khim. Tekhnol. = Fine Chem. Technol. 2021;16(4):345-351. https://doi.org/10.32362/2410-6593-2021-16-4-345-351
10. Markov A.V., Gushchin V.A., Markov V.A. Thermoelectric characteristics of electrically conductive composites based on mixtures of crystallizing and amorphous polymers with technical carbon. Plasticheskie Massy. 2019;(1-2):44-47 (in Russ.).
11. Markov A.V., Markov V.A., Chizhov A.S. The influence of the characteristics of polyethylene on thermoelectric properties of their composites with black carbon. Plasticheskie Massy. 2021;(5-6):18-23 (in Russ.). https://doi.org/10.35164/0554-2901-2021-5-6-18-23
12. Zeng Y., Lu G., Wang H., Du J., Ying Z., Liu C. Positive temperature coefficient thermistors based on carbon nanotube/polymer composites. Sci. Rep. 2014;4(1):6684. https://doi.org/10.1038/srep06684
13. Luo S., Wong C.P. Study on effect of carbon black on behavior of conductive polymer composites with positive temperature coefficient. IEEE Trans. Compon. Packag. Technol. 2000;23(1):151-156. https://doi.org/10.1109/6144.833054
14. Vigueras-Santiago E., Hernnández-López S., Camacho-Lopez M., Lara-Sanjuan O. Electric anisotropy in high density polyethylene + carbon black composites induced by mechanical deformation. J. Phys.: Conf. Ser. 2009;167(1):012039. https://doi.org/10.1088/1742-6596/167/1/012039
15. Chen Y., Song Y., Zhou J., Zheng Q. Effect of uniaxial pressure on conduction behavior of carbon black filled poly(methyl vinyl siloxane) composites. Chinese Sci. Bull. 2005;50: 101-107. https://doi.org/10.1007/BF02897510
16. De Focatiis D.S.A., Hull D., Sánchez-Valencia A. Roles of prestrain and hysteresis on piezoresistance in conductive elastomers for strain sensor applications. Plastics, Rubber and Composites. 2012;41(7):301-309. https://doi.org/10.1179/1743289812Y.0000000022
17. Lee G.J., Suh K.D., Im S.S. Study of electrical phenomena in carbon black-filled HDPE composite. Polym. Eng. Sci. 1998;38(3):471-477. https://doi.org/10.1002/pen.10209
18. Choi H.J., Kim M.S., Ahn D., Yeo S.Y., Lee S. Electrical percolation threshold of carbon black in a polymer matrix and its application to antistatic fibre. Sci. Rep. 2019;9(1):6338. https://doi.org/10.1038/s41598-019-42495-1
19. Tang H., Chen X., Luo Y. Studies on the PTC/NTC effect of carbon black filled low density polyethylene composites. Eur. Polym. J. 1997;33(8):1383-1386. https://doi.org/10.1016/S0014-3057(96)00221-2
20. Brigandi P.J., Cogen J.M., Pearson R.A. Electrically conductive multiphase polymer blend carbon‐based composites. Polym. Eng. Sci. 2014;54(1):1-16. https://doi.org/10.1002/PEN.23530
21. Zaikin A.E., Bikmullin R.S., Zharinova E.A. Specifics of localization of carbon black at the interface between polymeric phases. Polym. Sci. Ser. A. 2007;49(3):328-336. https://doi.org/10.1134/S0965545X07030145 [Original Russian Text: Zaikin A.E., Zharinova E.A., Bikmullin R.S. Specifics of localization of carbon black at the interface between polymeric phases. Vysokomolekulyarnye Soedineniya. Ser. A. 2007;49(3):499-509 (in Russ.).]
22. Markov A.V., Chizhov A.S. Self-regulating electrically conductive materials based on polyethylene compositions with UHMWPE and carbon black. Tonk. Khim. Tekhnol. = Fine Chem. Technol. 2019;14(2):60-69. https://doi.org/10.32362/2410-6593-2019-14-2-60-69
23. Zhou P., Yu W., Zhou C., Liu F., Hou L., Wang J. Morphology and electrical properties of carbon black filled LLDPE/EMA composites. J. Appl. Polym. Sci. 2007;103(1):487-492. https://doi.org/10.1002/app.25020
24. Bao Y., Xu L., Pang H., Yan D.X., Chen C., Zhang W.Q., Tang J.H., Li Z.M. Preparation and properties of carbon black/ polymer composites with segregated and double-percolated network structures. J. Mater. Sci. 2013;48:4892-4898. https://doi.org/10.1007/s10853-013-7269-x
25. Yurkin A.A., Kharlamova K.I., Abramushkina O.I., Surikov P.V. Tekhnologiya pererabotki plasticheskikh mass ( Plastic Processing Technology: educational manual). Moscow: RTU MIREA; 2023. 95 p. (in Russ.). ISBN 978-5-7339-1995-9
26. Markov V.A., Kandyrin L.B., Markov A.V. The effect of polymer crystallization on the electrical resistance of their compositions with carbon black. Konstruktsii iz kompozitsionnykh materialov = Composite Materials Constructions. 2013;3:35-40 (in Russ.).
27. Knite M., Teteris V., Kiploka A., Kaupuzs J. Polyisoprenecarbon black nanocomposites as tensile strain and pressure sensor materials. Sens. Actuators A: Phys. 2004;110(1-3): 142-149. https://doi.org/10.1016/j.sna.2003.08.006
28. Starý Z., Krückel J., Schubert D., Münstedt H. Behavior of Conductive Particle Networks in Polymer Melts under Deformation. AIP Conf. Proc. 2011;1375:232-239. https://doi.org/10.1063/1.3604483
29. Xie H., Dong L., Sun J. Influence of radiation structures on positive-temperature-coefficient and negative-temperaturecoefficient effects of irradiated low-density polyethylene/ carbon black composites. J. Appl. Polym. Sci. 2005;95(3): 700-704. https://doi.org/10.1002/app.21220
30. Yi X.S., Zhang J.F., Zheng Q., Pan Y. Influence of irradiation conditions on the electrical behavior of polyethylene carbon black conductive composites. J. Appl. Polym. Sci. 2000;77(3):494-499. https://doi.org/10.1002/(SICI)1097-4628(20000718)77:3<494::AID-APP4>3.0.CO;2-K
31. Lee G.J., Han M.G., Chung S.Ch., Suh K.D., Im S.S. Effect of crosslinking on the positive temperature coefficient stability of carbon black-filled HDPE/ethylene-ethyalacrylate copolymer blend system. Polym. Eng. Sci. 2002;42(8):1740-1747. https://doi.org/10.1002/PEN.11067
32. Xie H., Deng P., Dong L., Sun J. LDPE/Carbon black conductive composites: Influence of radiation crosslinking on PTC and NTC properties. J. Appl. Polym. Sci. 2002;85(13):2742-2749. https://doi.org/10.1002/app.10720
33. Seo M.K., Rhee K.Y., Park S.J. Influence of electro-beam irradiation on PTC/NTC behaviors of carbon blacks/HDPE conducting polymer composites. Curr. Appl. Phys. 2011;11(3):428-433. https://doi.org/10.1016/j.cap.2010.08.013
34. Markov V.A., Kandyrin L.B., Markov A.V., Sorokina E.A. Effect of silane-crosslinking on electrical properties and heatresistance of carbon black-filled polyethylene composites. Plasticheskie Massy. 2013;(10):21-24 (in Russ.).