Preview

Fine Chemical Technologies

Advanced search

Technology and implementation of fermentative units for bioprotein production from natural gas

https://doi.org/10.32362/2410-6593-2023-18-3-230-242

Full Text:

Abstract

Objectives. To conduct a comparative analysis of the features of a fermentation unit design for obtaining bioprotein from natural gas and determine the main technical and structural solutions used in the development of fermentation apparatus, which vary according to the method of organizing hydraulic and mass transfer processes.

Results. An analysis of publications devoted to the problem of developing technological equipment for conducting the process of obtaining a bioprotein from natural gas is presented. Using the comparative analysis, the key features of bioreactors and their internal elements are indicated according to the method of organizing the hydrodynamic regime. The main approaches to the technological development of fermentation units for obtaining bioprotein from natural gas are described and technical solutions used in the implementation of these structures are identified.

Conclusions. Fermenter designs for the cultivation of methane-oxidizing microorganisms vary according to the main approaches for implementing the hydraulic regime inside the apparatus. While one class of fermentation systems is based on the principle of volumetric mixing in the working space of the apparatus, with the possibility of including external circulation circuits, additional tanks, and auxiliary bioreactors in the system, the other main class relies on the principle of flow (displacement) in the tube space with subsequent release of the gas phase from the circulating culture liquid.

About the Authors

V. M. Kochetkov
GIPROBIOSINTEZ
Russian Federation

Vladimir M. Kochetkov, Head of the Technological Department

10, Testovskaya ul., Moscow, 123112 



I. S. Gaganov
GIPROBIOSINTEZ
Russian Federation

Ivan S. Gaganov, Leading Engineer-Technologist

10, Testovskaya ul., Moscow, 123112

Scopus Author ID 57224575918 



V. V. Kochetkov
GIPROBIOSINTEZ
Russian Federation

Vladimir V. Kochetkov, Technician-Technologist

10, Testovskaya ul., Moscow, 123112 



P. A. Nyunkov
GIPROBIOSINTEZ
Russian Federation

Pavel A. Nyunkov, General Manager

10, Testovskaya ul., Moscow, 123112 



References

1. Prado-Rubio O.A., Jørgensen J.B., Jørgensen S.B. Systematic Model Analysis for Single Cell Protein (SCP) Production in a U-Loop Reactor. Comput. Aided Chem. Eng. 2010;28:319–324. https://doi.org/10.1016/S1570-7946(10)28054-9

2. Vinarov A.Y. Feed protein from natural gas. Tsenovik. 2017;(5):32–33 (in Russ.).

3. Vorob’ev V.I., Nizhnikova E.V., Lempert O.T., Nefedova N.P. Alternative Sources of Obtaining Fish Meal Analogues. Izvestiya Kaliningradskogo gosudarstvennogo tekhnicheskogo universiteta (Izvestiya KGTU) = KSTU News. 2015;(38):74–82 (in Russ.).

4. Nikolaev S.I., Karapetyan A.K., Samofalova O.V., Danilenko I.Y. Gaprine utilization in poultry farming. Research, issues, solutions. In: Prospective trends in the development of scientific research in priority areas of modernization of the agro-industrial complex and rural areas in modern socioeconomic conditions: Proceedings of National Research/Practice Conference. December 15, 2021. Volgograd: VolGAU; 2021. P. 258–264 (in Russ.).

5. Ostroumova I.N., Kostyunichev V.V., Lyutikov A.A., Shumilina A.K., Filatova Т.А. The Effect of the Replacement of Fish Meal on High-Protein Soy Products and Gaprin in Feed for Whitefish Underyearlings. In: Current state of aquatic bioresources: Proceedings of 5th International Conference. November 27–29, 2019. Novosibirsk: NGAU; 2019. P. 322–325 (in Russ.).

6. Larsen E.B. U-shape and/or nozzle u-loop fermentor and method of carrying out a fermentation process: Pat. US6492135B1. Publ. 10.12.2002.

7. Olsen D.F., Jørgensen J. B., Villadsen J., Jørgensen S.B. Modeling and Simulation of Single Cell Protein Production. In: Proceedings of 11th International Symposium on Computer Applications in Biotechnology. July 7–9, 2010. Leuven, Belgium; 2010. P. 502–507.

8. Kulikova N.L., Lalova M.V., Levitin L.E., Nyunkov P.A., Tsymbal V.V. Method of Producing Microbial Protein Based on Hydrocarbon Material: RF Pat. RU 2720121. Publ. 24.04.2020 (in Russ.).

9. Mirkin M.G., Naidin A.V., Simonyan S.Yu., Shcherbakov V.I. Method for Producing a Biomass of Methane-Oxidizing Microorganisms and a Line for its Production: RF Pat. RU 2755539. Publ. 17.09.2021 (in Russ.).

10. Vinarov A.Yu., Gordeev L.S., Kukharenko A.A., Panfilov V.I. Fermentatsionnye apparaty dlya protsessov mikrobiologicheskogo sinteza (Fermentation Apparatus for Microbiological Processes). Мoscow: DeLi Print; 2005. 278 p. (in Russ.).

11. Elinov N.P. Osnovy biotekhnologii (Fundamentals of Biotechnology). St. Petersburg: Nauka; 1995. 600 p. (in Russ.).

12. Zimin B.А. Apparatus to Grow Microorganisms: RF Pat. RU 2352626. Publ. 20.04.2009 (in Russ.).

13. Lalova M.V., Mirkin M.G., Naidin A.V., Safonov A.I., Baburchenkova O.A. Fermentation Apparatus for Methane-Assimilating Microorganisms: RF Pat. RU 2580646. Publ. 10.04.2016 (in Russ.).

14. Vinarov A.Yu. Bioreactor for Growing Metautilizing Microorganisms: RF Pat. RU 2607782. Publ. 10.01.2017 (in Russ.).

15. Abaturov K.V., Neboisha Ya. Reactor for Aerobic Biosynthesis and a Method for Obtaining Microbial Biomass of Methane-Oxidizing Microorganisms in This Reactor: RF Pat. RU 2766708. Publ. 15.03.2022 (in Russ.).

16. Listov N.Ya., Neboisha Ya. Apparatus for Growing Microorganisms in Large-Capacity Production: RF Pat. RU 2769504. Publ. 01.04.2022 (in Russ.).

17. Potapov S.S., Petrov V.P., Lalov V.V., Lalova M.V., Kustov A.V., Kochetkov V.M. Fermenter and the method of fermentation: Pat. UK-2507109. Publ. 23.04.2014.

18. Kochetkov V.M., Lalova M.V., Molchan V.M., Nyunkov P.A. Fermentation Plant for Cultivation of MethaneOxidizing Bacteria Methylococcus Capsulatus: RF Pat. RU 2743581. Publ. 20.02.2021 (in Russ.).

19. Kochetkov V.M., Lalova М.V., Levitin L.E., Molchan V.M., Nyunkov P.A., Tsymbal V.V. Fermentation Plant for Cultivation of Methylococcus Capsulatus Methane-Oxidizing Bacteria: RF Pat. RU 2769129. Publ. 28.03.2022 (in Russ.).

20. Naidin A.V., Mirkin M.G., Simonyan S.Yu., Shcherbakov V.I. Device for Cultivation of Microorganisms: RF Pat. RU 2741346. Publ. 21.01.2021 (in Russ.).

21. Kochetkov V.M., Kustov A.V., Lalova M.V., Mirkin M.G., Naidin A.V., Potapov S.S. Apparatus for Cultivation of Methane-Oxidizing Microorganisms: RF Pat. RU 2580646. Publ. 10.06.2016 (in Russ.).

22. Kochetkov V.M., Gaganov I.S., Glazunov V.N., Shevchenko O.V., Nyunkov P.A. Fermenter for Cultivation of Methylococcus Capsulatis Methane-Oxidizing Microorganisms: RF Pat. RU 2773950. Publ. 16.04.2022 (in Russ.)

23. Nemirovskii M.S., Nyunkov P.A. Fermenter for Cultivation of Biomass of Methane-Oxidizing Microorganisms Methylococcus Capsulatus: RF Pat. RU 2739528. Publ. 25.01.2020 (in Russ.).

24. Al Taweel A.M., Shah Q., Aufderheide B. Effect of Mixing on Microorganism Growth in Loop Bioreactors. Int. J. Chem. Eng. 2012;(6):984827. https://doi.org/10.1155/2012/984827

25. Petersen L.A.H., Villadsen J., Jørgensen S.B., Gernaey K.V. Mixing and Mass Transfer in a Pilot Scale U-Loop Bioreactor. Biotechnol. Bioeng. 2017;114(2):344–354. https://doi.org/10.1002/bit.26084

26. Jørgensen L. Method and apparatus for performing a fermentation: Pat. EU-0418187. Publ. 20.03.1991.

27. Larsen E.B. U-shape and/or nozzle u-loop fermenter and method of fermentation: Pat. US20110244543A1. Publ. 21.06.2011.

28. Nguyen L.T., Silverman J.A., Aylen G.I. Gas–fed fermentation reactors, systems and processes utilizing gas/liquid separation vessels: Pat. US-10689610-B2. Publ. 14.08.2019.

29. Nguyen L.T., Johannessen A., Aylen G.I, Silverman J.A. Gas-fed fermentation reactors, systems and processes: Pat. US-10538730-B2. Publ. 21.01.2020.

30. Chervinskaya A.S, Voropaev V.S., Shmakov Е.A., Martynov D.V., Bondarenko P.Y., Bochkov M.A., Portnov S.A., Novikov S.N. Fermenter and Fermentation Unit for Continuous Cultivation of Microorganisms: RF Pat. RU 2728193. Publ. 28.07.2020 (in Russ.).


Supplementary files

1. Stages of the protein production process from natural gas
Subject
Type Исследовательские инструменты
View (32KB)    
Indexing metadata
  • A comparative analysis of the features of a fermentation unit design for obtaining bioprotein from natural gas was conducted.
  • Fermenter designs for the cultivation of methane-oxidizing microorganisms vary according to the main approaches for implementing the hydraulic regime inside the apparatus. While one class of fermentation systems is based on the principle of volumetric mixing in the working space of the apparatus, with the possibility of including external circulation circuits, additional tanks, and auxiliary bioreactors in the system, the other main class relies on the principle of flow (displacement) in the tube space with subsequent release of the gas phase from the circulating culture liquid.

Review

For citations:


Kochetkov V.M., Gaganov I.S., Kochetkov V.V., Nyunkov P.A. Technology and implementation of fermentative units for bioprotein production from natural gas. Fine Chemical Technologies. 2023;18(3):230-242. https://doi.org/10.32362/2410-6593-2023-18-3-230-242

Views: 154


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)