Preview

Fine Chemical Technologies

Advanced search

Determination of possible microRNA-markers of cobalt abuse by real-time qPCR using hypoxia signaling pathway panels

https://doi.org/10.32362/2410-6593-2023-18-1-65-74

Full Text:

Abstract

Objectives. Cobalt mimics the state of hypoxia to prevent degradation of the alpha subunit of hypoxia-inducible factor, resulting in an increase in blood oxygen capacity and endurance. Athletes can use this property to gain competitive advantage. Nowadays, direct methods of inductively coupled plasma mass spectrometry and liquid chromatography-tandem mass spectrometry are used to determine total cobalt levels in the body. However, the World Anti-Doping Agency is yet to establish a maximum allowable threshold concentration of this element in biofluids. The lack of clear identification criteria complicates the interpretation of the obtained results for the purposes of doping control. In this regard, the present work proposes a new approach for the indirect determination of possible cobalt abuse based on changes in the expression levels of miRNAs involved in the regulation of hypoxia signaling pathways. Here, the aim is to identify possible microRNA markers whose expression does not depend on exercise-induced hypoxia, but changes markedly when taking cobalt preparations.
Methods. MicroRNA isolation was performed from blood plasma samples using the PAXgene Blood miRNA Kit. Quantitative real-time polymerase chain reaction (PCR) was performed on CFX96 Bio-Rad (USA) analyzer using miScript® SYBR® Green PCR Kits and panels for studying the expression profiles of mature microRNAs of the hypoxia signaling pathway miScript® miRNA PCR Array.
Results. Based on the statistical analysis of the data, it was found that the expression of hsa-miR-15b-5p in the blood plasma of the subjects does not depend on physical activity, but increases when taking cobalt preparations.
Conclusions. The difference in expression levels during anaerobic exercise-induced hypoxia and cobalt-induced hypoxia makes hsa-miR-15b-5p a potential candidate to be a marker of erythropoiesis-stimulating agent abuse.

About the Authors

P. V. Postnikov
National Anti-Doping Laboratory (Institute), M.V. Lomonosov Moscow State University (NADL MSU)
Russian Federation

Pavel V. Postnikov, Cand. Sci. (Chem.), Head of the Doping Control Department

10-1, Elizavetinskii per., Moscow, 105005

Scopus Author ID 57021610900



F. V. Radus
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Fedor V. Radus, Assistant, I.P. Alimarin Department of Analitical Chemistry

86, Vernadskogo pr., Moscow, 119571



Yu. A. Efimova
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Yuliya A. Efimova, Cand. Sci. (Chem.), Assistant Professor, I.P. Alimarin Department of Analitical Chemistry

86, Vernadskogo pr., Moscow, 119571

Scopus Author ID 25228417800



I. V. Pronina
National Anti-Doping Laboratory (Institute), M.V. Lomonosov Moscow State University (NADL MSU); Institute of General Pathology and Pathophysiology
Russian Federation

Irina V. Pronina, Cand. Sci. (Chem.), Main Specialist, Doping Control Department, National Anti-Doping Laboratory (Institute); Senior Researcher, Pathogenomics and Transcriptomics Laboratory

10-1, Elizavetinskii per., Moscow, 105005

8, ul. Baltiiskaya, Moscow, 125315

Scopus Author ID 8161867200, ResearcherID G-3951-2014



References

1. Robinson J.C., James III G.W., Kark R.M. The effect of oral therapy with cobaltous chloride on the blood of patients suffering with chronic suppurative infection. New Engl. J. Med. 1949;240(19):749–753. https://doi.org/10.1056/NEJM194905122401902

2. Ebert B., Jelkmann W. Intolerability of cobalt salt as erythropoietic agent. Drug Test. Anal. 2014;6(3):185–189. https://doi.org/10.1002/dta.1528

3. Pronina I.V., Mochalova E.S., Efimova Yu. A., Postnikov P.V. Biological functions of cobalt and its toxicology and detection in anti-doping control. Tonk. Khim. Tekhnol. = Fine. Chem. Technol. 2021;16(4):318–336 (Russ., Eng.). https://doi.org/10.32362/2410-6593-2021-16-4-318-336

4. Hoffmeister T., Schwenke D., Wachsmuth N., Krug O., Thevis M., Byrnes W.C., Schmidt W.F.J. Erythropoietic effects of low-dose cobalt application. Drug Test Anal. 2019;11(2):200–207. https://doi.org/10.1002/dta.2478

5. Beuck S., Schanzer W., Thevis M. Hypoxia-inducible factor stabilizers and other small-molecule erythropoiesis- stimulating agents in current and preventive doping analysis. Drug Test. Anal. 2012;4(11):830–845. https://doi.org/10.1002/dta.390

6. Muñoz-Sánchez J., Chánez-Cárdenas M.E. The use of cobalt chloride as a chemical hypoxia model. J. Appl. Toxicol. 2019;39(4):556–570. https://doi.org/10.1002/jat.3749

7. Finley B.L., Monnot A.D., Paustenbach D.J., Gaffney S.H. Derivation of a chronic oral reference dose for cobalt. Regul. Toxicol. Pharmacol. 2012;64(3):491–503. https://doi.org/10.1016/j.yrtph.2012.08.022

8. Gault N., Sandre C., Poncy J.-L., Moulin C., Lefaix J.-L., Bresson C. Cobalt toxicity: chemical and radiological combined effects on HaCaT keratinocyte cell line. Toxicol. in Vitro. 2010;24(1):92–98. https://doi.org/10.1016/j.9tiv.2009.08.027

9. Catalani S., Rizzetti M.C., Padovani A., Apostoli P. Neurotoxicity of cobalt. Hum. Exp. Toxicol. 2012;31(5):421–437. https://doi.org/10.1177/0960327111414280

10. Gómez-Arnaiz S., Tate R.J., Grant M.H. Cytotoxicity of cobalt chloride in brain cell lines – a comparison between astrocytoma and neuroblastoma cells. Toxicol. in Vitro. 2020;68:104958. https://doi.org/10.1016/j.tiv.2020.104958

11. Jelkmann W. Efficacy of recombinant erythropoietins: Is there unity of international units? Nephrol. Dial. Transpl. 2009;24(5):1366–1368. https://doi.org/10.1093/ndt/gfp058

12. Krug O., Kutscher D., Piper T., Geyer H., Schänzer W., Thevis M. Quantifying cobalt in doping control urine samples – a pilot study. Drug Test. Anal. 2014;6(11–12):1186–1190. https://doi.org/10.1002/dta.1694

13. Ho E.N.M., Chan G.H.M., Wan T.S.M., Curl P., Riggs C.M., Hurley M.J., Sykes D. Controlling the misuse of cobalt in horses. Drug Test. Anal. 2015;7(1):21–30. https://doi.org/10.1002/dta.1719

14. Thevis M., Krug O., Piper T., Geyer H., Schanzer W. Solutions Advertised as Erythropoiesis-stimulating Products were Found to Contain Undeclared Cobalt and Nickel Species. Int. J. Sports Med. 2016;37(1):82–84. https://doi.org/10.1055/s-0035-1569350

15. Knoop A., Görgens C., Geyer H., Thevis M. Elevated urinary cobalt concentrations identified in routine doping controls can originate from vitamin B12. Rapid Commun. Mass Spectrom. 2020;34(7):e8649. https://doi.org/10.1002/rcm.8649

16. Sobolevsky T., Ahrens B. Measurement of urinary cobalt as its complex with 2-(5-chloro-2-pyridylazo)- 5-diethylaminophenol by liquid chromatography-tandem mass spectrometry for the purpose of anti-doping control. Drug Test. Anal. 2021;13(6):1145–1157. https://doi.org/10.1002/dta.3004

17. Minakata K., Suzuki M., Suzuki O. Application of electrospray ionization tandem mass spectrometry for the rapid and sensitive determination of cobalt in urine. Anal. Chim. Acta. 2008;614(2):161–164. https://doi.org/10.1016/j.aca.2008.03.043

18. Hillyer L.L., Ridd Z., Fenwick S., Hincks P., Paine S.W. Pharmacokinetics of inorganic cobalt and a vitamin B12 supplement in the Thoroughbred horse: differentiating cobalt abuse from supplementation. Equine Vet. J. 2018;50(3):343–349. https://doi.org/10.1111/evj.12774

19. Postnikov P.V., Ordzhonikidze Z.G., Badtieva V.A., Turin I.A., Pavlov V.I. Determination of cobalt in plasma blood samples by the ICP-MS method after oral intake of low doses of Co-containing dietary supplements. Voprosy pitaniia = Problems of Nutrition. 2022;91(6):100–109.

20. Hoffmeister T., Schwenke D., Krug O., Wachsmuth N., Geyer H., Thevis M, Byrnes W.C., Schmidt W.F.J. Effects of 3 Weeks of Oral Low-Dose Cobalt on Hemoglobin Mass and Aerobic Performance. Front. Physiol. 2018;9:1289. https://doi.org/10.3389/fphys.2018.01289

21. Postnikov P.V., Efimova Yu. A., Pronina I.V. Circulating MicroRNAs as a New Class of Biomarkers of Physiological Reactions of the Organism to the Intake of Dietary Supplements and Drugs. Microrna. 2022;11(1):25–35. http://dx.doi.org/10.2174/2211536611666220422123437

22. Pronina I.V., Postnikov P.V., Pavlov V.I., Ordzhonikidze Z.G. Comparison of micron expression profiles of athletes involved in endurance sports and non-athletic volunteers using a signaling pathway panel. Sportivnaya meditsina nauka i praktika = Sport Medicine: research and Practice. 2022;12(2):13–21 (in Russ.). https://doi.org/10.47529/2223-2524.2022.2.10

23. Sessa F., Salerno M., Di Mizio G., Bertozzi G., Messina G., Tomaiuolo B., Pisanelli D., Maglietta F., Ricci P., Pomara C. Anabolic Androgenic Steroids: Searching New Molecular Biomarkers. Front. Pharmacol. 2018;9:1321. https://doi.org/10.3389/fphar.2018.01321

24. Leuenberger N., Saugy M. Circulating microRNAs: The Future of Biomarkers in Anti-doping Field. In: Santulli G. (Ed.). MicroRNA: Medical Evidence. Advances in Experimental Medicine and Biology. 2015;888:401–408. https://doi.org/10.1007/978-3-319-22671-2_20

25. Guo X.-Y., Liu Q.-L., Liu W., Cheng J.-X., Li Z.-J. Effect and mechanism of miR-135a-5p/CXCL12/JAK-STAT axis on inflammatory response after myocardial infarction. Eur. Rev. Med. Pharmacol. Sci. 2020;24(24):12912–12928. https://doi.org/10.26355/eurrev_202012_24195

26. Yin N., Zhu L., Ding L., Yuan J., Du L., Pan M., Xue F., Xiao H. MiR-135-5p promotes osteoblast differentiation by targeting HIF1AN in MC3T3-E1 cells. Cell. Mol. Biol. Lett. 2019;24:51. https://doi.org/10.1186/s11658-019-0177-6

27. Zhang Z., Ren L., Zhao Q., Lu G., Ren M., Lu X., Yin Y., He S., Zhu C. TRPC1 exacerbate metastasis in gastric cancer via ciRS-7/miR-135a-5p/TRPC1 axis. Biochem. Biophys. Res. Commun. 2020;529(1):85–90. https://doi.org/10.1016/j.bbrc.2020.05.181

28. Li Y., Peng B., Li Y., Huang A., Peng Y., Yu Q., Li Y. MiR-203a-3p/153-3p improves cognitive impairments induced by ischemia/reperfusion via blockade of SRC-mediated MAPK signaling pathway in ischemic stroke. Chem. Biol. Interact. 2022;358:109900. https://doi.org/10.1016/j.cbi.2022.109900

29. Huang H., Dong H., Zhang J., Ke X., Li P., Zhang E., Xu G., Sun B., Gao Y. The Role of Salivary miR-134-3p and miR-15b-5p as Potential Non-invasive Predictors for Not Developing Acute Mountain Sickness. Front. Physiol. 2019;10:898. https://doi.org/10.3389/fphys.2019.00898


Supplementary files

1. Comparison of expression levels of microRNAs of the hypoxia signaling pathway circulating in plasma in experimental groups 1 (athletes) and 2 (volunteers taking dietary supplements Cobalt DS®)
Subject
Type Исследовательские инструменты
View (154KB)    
Indexing metadata
  • The present work proposes a new approach for the indirect determination of possible cobalt abuse based on changes in the expression levels of miRNAs involved in the regulation of hypoxia signaling pathways.
  • It was found that the expression of hsa-miR-15b-5p in the blood plasma of the subjects does not depend on physical activity, but increases when taking cobalt preparations.

Review

For citations:


Postnikov P.V., Radus F.V., Efimova Yu.A., Pronina I.V. Determination of possible microRNA-markers of cobalt abuse by real-time qPCR using hypoxia signaling pathway panels. Fine Chemical Technologies. 2023;18(1):65–74. https://doi.org/10.32362/2410-6593-2023-18-1-65-74

Views: 259


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)