Preview

Fine Chemical Technologies

Advanced search

Method for obtaining recombinant antibodies produced by a cell line transduced with recombinant adenoviruses

https://doi.org/10.32362/2410-6593-2023-18-1-48-64

Abstract

Objectives. To develop a technology for obtaining recombinant antibodies in a suspension culture of human HEK293 cells using transduction with recombinant adenovirus serotype 5 (rAd5) carrying genes expressing heavy and light chains of antibodies on the example of two broadspectrum anti-influenza antibodies 27F3 and CR9114.
Methods. Ad5-27F3-H, Ad5-CR9114-H, and Ad5-27F3-L recombinant adenoviruses carrying the 27F3 antibody heavy chain gene, CR9114 antibody heavy chain gene, and 27F3 light chain gene, respectively, were generated using the AdEasy™ Adenoviral vector system. To accumulate preparative amounts of recombinant r27F3 and rCR9114 antibodies, the HEK293 suspension cell line was transduced with recombinant adenoviruses carrying genes for heavy and light chains of antibodies. The cells were cultured in a wave-type bioreactor. Chromatography was used to purify recombinant antibodies from the culture medium. After analyzing the molecular weights of purified antibodies using protein electrophoresis, their ability to interact with influenza A and B viruses was analyzed using the Western blot technique, while their ability to neutralize influenza A and B viruses was evaluated using the virus neutralization assay.
Results. A method for the accumulation and purification of recombinant r27F3 and CR9114 antibodies from the culture medium of a suspension culture of human cells following transduction with its recombinant adenoviruses carrying the genes for heavy and light chains of these antibodies was developed. The ability of the r27F3 antibody to interact with and neutralize influenza A viruses of group 1 (except influenza A virus subtype H2) and group 2 was shown. The ability of the rCR9114 antibody to interact with influenza A viruses of group 1 and influenza B viruses, as well as to neutralize influenza A viruses of group 1, was demonstrated.
Conclusions. A technology for obtaining recombinant antibodies in a suspension culture of HEK293 cells using transduction with recombinant adenoviruses carrying genes expressing heavy and light chains of antibodies was developed along with a confirmation of their specificity.

About the Authors

E. S. Sedova
N.F. Gamaleya National Research Center for Epidemiology and Microbiology (The Gamaleya National Center), Ministry of Health of the Russian Federation
Russian Federation

Elena S. Sedova, Cand. Sci. (Biol.), Researcher, Laboratory of Molecular Biotechnology

18, Gamaleya ul., Moscow, 123098

Scopus Author ID 36341354100, ResearcherID S-4206-2017



D. N. Shcherbinin
N.F. Gamaleya National Research Center for Epidemiology and Microbiology (The Gamaleya National Center), Ministry of Health of the Russian Federation
Russian Federation

Dmitriy N. Shcherbinin, Cand. Sci. (Biol.), Researcher, Laboratory of Molecular Biotechnology

18, Gamaleya ul., Moscow, 123098

Scopus Author ID 36599350900, ResearcherID E-7682-2014



A. S. Bandelyuk
N.F. Gamaleya National Research Center for Epidemiology and Microbiology (The Gamaleya National Center), Ministry of Health of the Russian Federation
Russian Federation

Alina S. Bandelyuk, Junior Researcher, Laboratory of Molecular Biotechnology

18, Gamaleya ul., Moscow, 123098

Scopus Author ID 56290408700, ResearcherID D-9771-2014



L. V. Verkhovskaya
N.F. Gamaleya National Research Center for Epidemiology and Microbiology (The Gamaleya National Center), Ministry of Health of the Russian Federation
Russian Federation

Ludmila V. Verkhovskaya, Cand. Sci. (Biol.), Leading Researcher, Laboratory of Molecular Biotechnology

18, Gamaleya ul., Moscow, 123098



N. Yu. Viskova
N.F. Gamaleya National Research Center for Epidemiology and Microbiology (The Gamaleya National Center), Ministry of Health of the Russian Federation
Russian Federation

Natalia Yu. Viskova, Researcher, Laboratory of Molecular Biotechnology

18, Gamaleya ul., Moscow, 123098



E. D. Avdonina
N.F. Gamaleya National Research Center for Epidemiology and Microbiology (The Gamaleya National Center), Ministry of Health of the Russian Federation
Russian Federation

Elena D. Avdonina, Junior Researcher, Laboratory of Molecular Biotechnology

18, Gamaleya ul., Moscow, 123098



V. V. Prokofiev
N.F. Gamaleya National Research Center for Epidemiology and Microbiology (The Gamaleya National Center), Ministry of Health of the Russian Federation
Russian Federation

Vladimir V. Prokofiev, Laboratory Assistant-Researcher, Laboratory of Immunobiotechnology

18, Gamaleya ul., Moscow, 123098

Scopus Author ID 57300704700



E. I. Ryabova
N.F. Gamaleya National Research Center for Epidemiology and Microbiology (The Gamaleya National Center), Ministry of Health of the Russian Federation
Russian Federation

Ekaterina I. Ryabova, Junior Researcher, Laboratory of Immunobiotechnology

18, Gamaleya ul., Moscow, 123098

Scopus Author ID 57301278100, ResearcherID AAE-7335-2022



I. B. Esmagambetov
N.F. Gamaleya National Research Center for Epidemiology and Microbiology (The Gamaleya National Center), Ministry of Health of the Russian Federation
Russian Federation

Ilias B. Esmagambetov, Cand. Sci. (Biol.), Leading Researcher, Laboratory of Immunobiotechnology

18, Gamaleya ul., Moscow, 123098

Scopus Author ID 56120429700, ResearcherID E-3327-2014



K. A. Pervoykina
N.F. Gamaleya National Research Center for Epidemiology and Microbiology (The Gamaleya National Center), Ministry of Health of the Russian Federation
Russian Federation

Kristina A. Pervoykina, Laboratory Assistant-Researcher, Laboratory of Molecular Biotechnology

18, Gamaleya ul., Moscow, 123098



E. A. Bogacheva
N.F. Gamaleya National Research Center for Epidemiology and Microbiology (The Gamaleya National Center), Ministry of Health of the Russian Federation
Russian Federation

Competing Interests:

Elena A. Bogacheva, Junior Researcher, Laboratory of Molecular Biotechnology

18, Gamaleya ul., Moscow, 123098



A. A. Lysenko
N.F. Gamaleya National Research Center for Epidemiology and Microbiology (The Gamaleya National Center), Ministry of Health of the Russian Federation
Russian Federation

Andrei A. Lysenko, Senior Researcher, Laboratory of Molecular Biotechnology

18 Gamaleya ul., Moscow, 123098

Scopus Author ID 55573757600



M. M. Shmarov
N.F. Gamaleya National Research Center for Epidemiology and Microbiology (The Gamaleya National Center), Ministry of Health of the Russian Federation
Russian Federation

Maksim M. Shmarov, Dr. Sci. (Biol.), Head of the Laboratory of Molecular Biotechnology

18, Gamaleya ul., Moscow, 123098

Scopus Author ID 6507322279, ResearcherID D-8662-2014



References

1. Kaplon H., Chenoweth A., Crescioli S., Reichert J.M. Antibodies to watch in 2022. MAbs. 2022 Jan-Dec. 2022;14(1):2014296. https://doi.org/10.1080/19420862.2021.2014296

2. Kumar R., Parray H.A., Shrivastava T., Sinha S., Luthra K Phage display antibody libraries: A robust approach for generation of recombinant human monoclonal antibodies. Int. J. Biol. Macromol. 2019;135:907–918. https://doi.org/10.1016/j.ijbiomac.2019.06.006

3. Al’tshuler E.P., Serebryanaya D.V., Katrukha A.G. Obtaining recombinant antibodies and methods for increasing their affinity. Uspekhi Biologicheskoi Khimii. 2010;50:203–258 (in Russ.). URL: https://www.fbras.ru/wp-content/uploads/2017/10/Altschuler.pdf

4. Yu J., Guo Y., Gu Y., Fan X., Li F., Song H., Nian R., Liu W. A novel silk fibroin protein-based fusion system for enhancing the expression of nanobodies in Escherichia coli. Appl. Microbiol. Biotechnol. 2022;106(5–6):1967–1977. https://doi.org/10.1007/s00253-022-11857-7

5. Garvey M. Non-mammalian eukaryotic expression systems yeast and fungi in the production of biologics. J. Fungi (Basel). 2022;8(11):1179. https://doi.org/10.3390/jof8111179

6. Vazquez-Lombardi R., Nevoltris D., Luthra A., Schofield P., Zimmermann C., Christ D. Transient expression of human antibodies in mammalian cells. Nat. Protoc. 2019;13:99–117. https://doi.org/10.1038/nprot.2017.126

7. Korn J., Schäckermann D., Kirmann T., Bertoglio F., Steinke S., Heisig J., Ruschig M., Rojas G., Langreder N., Wenzel E.V., Roth K.D.R., Becker M., Meier D., van den Heuvel J., Hust M., Dübel S., Schubert M. Baculovirus-free insect cell expression system for high yield antibody and antigen production. Sci Rep. 2020;10(1):21393. https://doi.org/10.1038/s41598-020-78425-9

8. Huang Y.M., Hu W., Rustandi E., Chang K., Yusuf-Makagiansar H., Ryll T. Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment. Biotechnol. Prog. 2010;26(5):1400–1410. https://doi.org/10.1002/btpr.436

9. Gupta K., Parasnis M., Jain R., Dandekar P. Vectorrelated stratagems for enhanced monoclonal antibody production in mammalian cells. Biotechnol. Adv. 2019;37(8):107415. https://doi.org/10.1016/j.biotechadv.2019.107415

10. Jäger V., Büssow K., Wagner A., Weber S., Hust M., Frenzel A., Schirrmann T. High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells. BMC Biotechnol. 2013;13:52. https://doi.org/10.1186/1472-6750-13-52

11. Kim T.K., Eberwine J.H. Mammalian cell transfection: the present and the future. Anal. Bioanal. Chem. 2010;397(8):3173–3178. https://doi.org/10.1007/s00216-010-3821-6

12. Croset A., Delafosse L., Gaudry J.P., Arod C., Glez L., Losberger C., Begue D., Krstanovic A., Robert F., Vilbois F., Chevalet L., Antonsson B. Differences in the glycosylation of recombinant proteins expressed in HEK and CHO cells. J. Biotechnol. 2012;161(3):336–348. https:// doi.org/10.1016/j.jbiotec.2012.06.038

13. Tan E., Chin C.S.H., Lim Z.F.S., Ng S.K. HEK293 Cell Line as a Platform to Produce Recombinant Proteins and Viral Vectors. Front. Bioeng. Biotechnol. 2021;9:796991. https://doi.org/10.3389/fbioe.2021.796991

14. König J., Hust M., van den Heuvel J. Validation of the Production of Antibodies in Different Formats in the HEK293 Transient Gene Expression System. Methods Mol. Biol. 2021;2247:59–76. https://doi.org/10.1007/978-1-0716-1126-5_4

15. Ryabova E.I., Derkaev A.A., Esmagambetov I.B., Shcheblyakov D.V., Dovgii M.A., Byrikhina D.V., Prokof’ev V.V., Chemodanova I.P. Comparison of different technologies for producing recombinant adeno-associated virus on a laboratory scale. BIOpreparaty. Profilaktika, diagnostika, lechenie = BIOpreparations. Prevention, Diagnosis, Treatment. 2021;21(4):266–278 (in Russ.). https://doi.org/10.30895/2221-996X-2021-21-4-266-278

16. Greber U.F., Gomez-Gonzalez A. Adenovirus – a blueprint for gene delivery. Curr. Opin. Virol. 2021;48:49–56. https://doi.org/10.1016/j.coviro.2021.03.006

17. Lang S., Xie J., Zhu X., Wu N.C., Lerner R.A., Wilson I.A. Antibody 27F3 broadly targets influenza A group 1 and 2 hemagglutinins through a further variation in VH1-69 antibody orientation on the HA stem. Cell Rep. 2017;20(12):2935–2943. https://doi.org/10.1016/j.celrep.2017.08.084

18. Dreyfus C., Laursen N.S., Kwaks T., Zuijdgeest D., Khayat R., Ekiert D.C., Lee J.H., Metlagel Z., Bujny M.V., Jongeneelen M., van der Vlugt R., Lamrani M., Korse H.J., Geelen E., Sahin Ö., Sieuwerts M., Brakenhoff J.P., Vogels R., Li O.T., Poon L.L., Peiris M., Koudstaal W., Ward A.B., Wilson I.A., Goudsmit J., Friesen R.H. Highly conserved protective epitopes on influenza B viruses. Science. 2012;337(6100):1343–1348. https://doi.org/10.1126/science.1222908

19. Tutykhina I., Esmagambetov I., Bagaev A., Pichugin A., Lysenko A., Shcherbinin D., Sedova E., Logunov D., Shmarov M., Ataullakhanov R., Naroditsky B., Gintsburg A. Vaccination potential of B and T epitope-enriched NP and M2 against Influenza A viruses from different clades and hosts. PLoS One. 2018;13(1):e0191574. https://doi.org/10.1371/journal.pone.0191574

20. Shubladze A.K., Gaidamovich S.Ya. Kratkii kurs prakticheskoi virusologii (Short Course of Practical Virology). Мoscow: Medgiz; 1954. 273 p. (in Russ.).

21. Gribova I.Yu., Tillib S.V., Tutykhina I.L., Shmarov M.M., Logunov D.Yu., Verkhovska L.V., Naroditskii B.S., Gintsburg A.L. Effective Genetic Expression of Nanoantibodies by Recombinant Adenoviral Vector in vitro. Acta Naturae. 2011;3(3):64–70.

22. Tutykhina I.L., Sedova E.S., Gribova I.Y., Ivanova T.I., Vasilev L.A., Rutovskaya M.V., Lysenko A.A., Shmarov M.M., Logunov D.Y., Naroditsky B.S., Tillib S.V., Gintsburg A.L. Passive immunization with a recombinant adenovirus expressing an HA (H5)-specific single-domain antibody protects mice from lethal influenza infection. Antiviral. Res. 2013;97(3):318–328. https://doi.org/10.1016/j.antiviral.2012.12.021

23. Shcherbinin D.N., Alekseeva S.V., Shmarov M.M., Smirnov Yu.A., Naroditskii B.S., Gintsburg A.L. The Analysis of B-Cell Epitopes of Influenza Virus Hemagglutinin. Acta Naturae. 2016;8(1):13–20. https://doi.org/10.32607/20758251-2016-8-1-13-20

24. Esmagambetov I.B., Shcheblyakov D.V., Egorova D.A., et al. Nanobodies Are Potential Therapeutic Agents for the Ebola Virus Infection. Acta Naturae. 2021;13(4):53–63. https://doi.org/10.32607/actanaturae.11487

25. Throsby M., van den Brink E., Jongeneelen M., Poon L.L., Alard P., Cornelissen L., Bakker A., Cox F., van Deventer E., Guan Y., Cinatl J., ter Meulen J., Lasters I., Carsetti R., Peiris M., de Kruif J., Goudsmit J. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PloS One. 2008;3(12):e3942. https://doi.org/10.1371/journal.pone.0003942


Supplementary files

1. Electropherogram of purified r27F3 and rCR9114 antibodies
Subject
Type Исследовательские инструменты
View (62KB)    
Indexing metadata ▾
  • A method for the accumulation and purification of recombinant r27F3 and CR9114 antibodies from the culture medium of a suspension culture of human cells following transduction with its recombinant adenoviruses carrying the genes for heavy and light chains of these antibodies was developed.
  • The ability of the r27F3 antibody to interact with and neutralize influenza A viruses of group 1 (except influenza A virus subtype H2) and group 2 was shown.
  • The ability of the rCR9114 antibody to interact with influenza A viruses of group 1 and influenza B viruses, as well as to neutralize influenza A viruses of group 1, was demonstrated.

Review

For citations:


Sedova E.S., Shcherbinin D.N., Bandelyuk A.S., Verkhovskaya L.V., Viskova N.Yu., Avdonina E.D., Prokofiev V.V., Ryabova E.I., Esmagambetov I.B., Pervoykina K.A., Bogacheva E.A., Lysenko A.A., Shmarov M.M. Method for obtaining recombinant antibodies produced by a cell line transduced with recombinant adenoviruses. Fine Chemical Technologies. 2023;18(1):48–64. https://doi.org/10.32362/2410-6593-2023-18-1-48-64

Views: 750


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)