Preview

Fine Chemical Technologies

Advanced search

Modern polymer composite materials for bone surgery: Problems and prospects

https://doi.org/10.32362/2410-6593-2022-17-6-514-536

Full Text:

Abstract

Objectives. To discuss the main problems and prospects of creating modern osteoplastic materials based on polymer compositions used for bone surgery.

Methods. This review summarizes the research works devoted to the creation of materials used for bone implants and issues involved in their practical testing, as well as analyzes and synthesizes data of scientific articles on the following topics: rationale for the use of biodegradable materials in bone surgery; biodegradation and bioreparation bone graft processes; requirements for degradable polymer composite materials (PCMs) for biomedical applications; overview of polymeric materials suitable for use in implant practice; impact of modifications of the PCM on the structure and biological activity of the material in biological media; effect of exhaust and heat treatment on the molecular structure of polyalkanoates.

Results. The most promising biodegradable resorbable materials for reparative bone surgery to date are compared. The requirements for these types of materials are formulated and a rationale for their use is provided that takes into account the advantages over traditional metal and ceramic implants. The features of the kinetics and mechanism of biodegradation of implants in their interaction with the bone biological environment of the body from the moment of implant insertion to complete wound healing are considered. As a result of the analysis, factors that may affect the activity of implant decomposition and methods of adjusting the decomposition rate and mechanical characteristics of the material, such as chemical functionalization, the creation of block copolymers, the inclusion of fibers and mineral fillers in the composite, as well as heat treatment and extraction of the composite at the manufacturing stage, were identified. Among the main factors, the influence of the structure of the composite material on its biological activity during interaction with biological media was evaluated. Of polymer materials, the main attention is paid to the most common biodegradable polymers widely used in medicine: polyhydroxybutyrate (PHB) of microbiological origin, polylactide (PLA) and other polymers based on polylactic acid, polycaprolactone (PCL). The effect of their modification by such additives as hydroxyapatite (HAP), chitin and chitosan, and beta-tricalcium phosphate (β-TCF) is considered. Materials based on PHB are concluded as the most promising due to their complete biodegradability to non-toxic products (carbon dioxide and water) and good biocompatibility. Nevertheless, existing compositions based on PHB are not without disadvantages, which include fragility, low elasticity, unstable behavior under high-temperature exposure during processing, implant molding, sterilization, etc., which requires improvement both in terms of polymer modification and in terms of composition of compositions.

Conclusions. The review considers approaches to achieving the properties of materials required for perfect implants. The main requirements for implants are optimization of the time of resorption of the osteoplastic matrix, facilitating the resorption of the osteoplastic matrix synchronized in time with the process of bone regeneration. To achieve these requirements, it is necessary to apply technologies that include modification of polymer composite materials by affecting the chemical composition and structure; introduction of fillers; use of chemical functionalization, orientation extraction, heat treatment. The success of using bone materials based on biodegradable polymers is based on an accurate understanding of the mechanism of action of various components of the implant composition and strict compliance with the tightening regulatory requirements of implantation technology.

About the Authors

P. A. Povernov
N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Russian Federation

Pavel A. Povernov - Postgraduate Student, Junior Researcher, Laboratory of Physico-Chemistry of Compositions of Synthetic and Natural Polymers, Scopus Author ID 57210264564, ResearcherID ABC-5732-2021.

4, Kosygina ul., Moscow, 119334


Competing Interests:

The authors declare no conflicts of interest



L. S. Shibryaeva
N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; MIREA – Russian Technological University, M.V. Lomonosov Institute of Fine Chemical Technologies
Russian Federation

Lyudmila S. Shibryaeva - Dr. Sci. (Chem.), Professor, Leading Researcher, Laboratory of Physico-Chemistry of Compositions of Synthetic and Natural Polymers, N.M. Emanuel Institute of Biochemical Physics, RAS; Professor, F.F. Koshelev Department of Chemistry and Technology of Processing of Elastomers, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA – RTU, Scopus Author ID 7003539026, ResearcherID A-7634-2014.

4, Kosygina ul., Moscow, 119334; 86, Vernadskogo pr., Moscow, 119571


Competing Interests:

The authors declare no conflicts of interest



L. R. Lusova
MIREA – Russian Technological University, M.V. Lomonosov Institute of Fine Chemical Technologies
Russian Federation

Liudmila R. Lyusova - Dr. Sci. (Eng.), Professor, Head of the F.F. Koshelev Department of Chemistry and Technology of Processing of Elastomers, Scopus Author ID 6508196636, ResearcherID ABC-7835-2021.

86, Vernadskogo pr., Moscow, 119571


Competing Interests:

The authors declare no conflicts of interest



A. A. Popov
N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; G.V. Plekhanov Russian University of Economics
Russian Federation

Anatoliy A. Popov - Dr. Sci. (Chem.), Professor, Head of the Laboratory of Physico-Chemistry of Compositions of Synthetic and Natural Polymers, Deputy Director for Scientific and Educational Work, Scopus Author ID 7402986626, ResearcherID I-9835-2014.

4, Kosygina ul., Moscow, 119334


Competing Interests:

The authors declare no conflicts of interest



References

1. Bauer S., Schmuki P., von der Mark K., Park J. Engineering biocompatible implant surfaces. Part I: Materials and surfaces. Prog. Mater. Sci. 2016;58(3):261–326. https://doi.org/10.1016/j.pmatsci.2012.09.001

2. Schwitalla A., Müller W.D. PEEK dental implants: A review of the literature. J. Oral Implantol. 2013;39(6):743–749. https://doi.org/10.1563/AAID-JOI-D-11-00002

3. Özkurt Z., Kazazoğlu E. Clinical success of zirconia in dental applications. J. Prosthodont. 2010;19(1):64–68. https://doi.org/10.1111/j.1532-849X.2009.00513.x

4. Li Y., Brånemark R. Osseointegrated prostheses for rehabilitation following amputation. Unfallchirurg. 2017;120(4):285–292. https://doi.org/10.1007/s00113-0170331-4

5. Verma M.L., Kumar S., Jeslin J., Dubey N.K. Microbial Production of Biopolymers with Potential Biotechnological Applications. In: Biopolymer-Based Formulations. Elsevier; 2020. P. 105–137. https://doi.org/10.1016/B978-0-12-8168974.00005-9

6. Rebelo R., Vila N., Rana S., Fangueiro R. Poly Lactic Acid Fibre Based Biodegradable Stents and Their Functionalization Techniques. In: Fangueiro R., Rana S. (Eds.). Natural Fibres: Advances in Science and Technology Towards Industrial Applications. RILEM Bookseries. Dordrecht: Springer. 2017;12:331–342. https://doi.org/10.1007/978-94017-7515-1_25

7. Rebelo R., Fernandes M., Fangueiro R. Biopolymers in medical implants: A brief review. Procedia Eng. 2017;200:236–243. https://doi.org/10.1016/j.proeng.2017.07.034

8. Lykoshin D.D., Zaitsev V.V., Kostromina M.A., Esipov R.S. New-generation osteoplastic materials based on biological and synthetic matrices. Tonk. Khim. Tekhnol. = Fine Chem. Technol. 2021;16(1):36–54 (in Russ.). https://doi.org/10.32362/2410-6593-2021-16-1-36-54

9. Albrektsson T., Chrcanovic B., Östman P.-O., Sennerby L. Initial and long-term crestal bone responses to modern dental implants. Periodontol. 2000. 2017;73(1):41–50. https://doi.org/10.1111/prd.12176

10. Alghamdi H.S. Methods to Improve Osseointegration of Dental Implants in Low Quality (Type-IV) Bone: An Overview. J. Funct. Biomater. 2018;9(1):7. https://doi.org/10.3390/jfb9010007

11. Li J., Lu X.L., Zheng Y.F. Effect of surface modified hydroxyapatite on the tensile property improvement of HA/PLA composite. Appl. Surf. Sci. 2008;255(2):494–497. https://doi.org/10.1016/j.apsusc.2008.06.067

12. Wang J., et al. Fabrication and characterization of composites composed of a bioresorbable polyester matrix and surface modified calcium carbonate whisker for bone regeneration. Polym. Adv. Technol. 2017;28(12):1892–1901. https://doi.org/10.1002/pat.4078

13. Poroysky S.V., Mikhalchenko D.V., Yarigina E.N., Khvostov S.N., Zhidovinov A.V. On the osseointegration of dental implants and methods of its stimulation. J. VolgSMU. 2015;3(55):6–9 (in Russ.).

14. Mirsaeva F.Z., Ubaidullaev M.B., Vyatkina A.B., Fatkullina S.Sh. Dental’naya implantologiya (Dental implantology): textbook. Ufa: BGMU; 2015. 124 p. (in Russ). URL: http://library.bashgmu.ru/elibdoc/elib624.pdf

15. Alves E.G.L., de Faria Rezende C.M., Serakides R., et al. Orthopedic implant of a polyhydroxybutyrate (PHB) and hydroxyapatite composite in cats. J. Feline Med. Surg. 2011;13(8):546–552. http://doi.org/10.1016/j.jfms.2011.03.002

16. Barysh A.E., Dedukh N.V. Bone morphology around ceramic-coated implants with different surface topography. Ortopediya, travmatologiya i protezirovanie = Orthopedics, Traumatology and Prosthetics. 2009;(1):38–44 (in Russ.).

17. Popkov A.V. Biocompatible implants in traumatology and orthopaedics (A review of literature). Genii ortopedii = Orthopaedic Genius. 2014;(3):94–99 (in Russ.).

18. Popkov A.V. Bioaktivnye implantaty v travmatologii i ortopedii (Bioactive implants in traumatology and ortopaedics). Irkutsk: Elizarov Center; 2012. 434 p. (in Russ). ISBN 978-5-98277-155-1

19. Mansourvar M.I., Maizatul A., Herawan T., Gopal R.R., Abdul K.S., Nasaruddin F.H. Automated Bone Age Assessment: Motivation, Taxonomies, and Challenges. Comput. Math. Methods Med. 2013;2013:391626. https://doi.org/10.1155/2013/391626

20. Narayanan R., Seshadri S.K., Kwon T.Y., Kim K.H. Calcium phosphate-based coatings on titanium and its alloys. J. Biomed. Mater. Res. B. Appl. Mater. 2008;85B(1):279–299. https://doi.org/10.1002/jbm.b.30932

21. Kurusu R.S., Demarquette N.R., Gauthier C., Chenal J.M. Effect of ageing and annealing on the mechanical behaviour and biodegradability of a poly(3-hydroxybutyrate) and poly(ethylene-co-methyl-acrylate-co-glycidylmethacrylate)blend. Polym. Int. 2014;63(6):1085–1093. https://doi.org/10.1002/pi.4616

22. Sun J., Wang J., Yeo J.C.C., Yuan D., Li H., Stubbs L.P., He C. Lignin epoxy composites: preparation, morphology, and mechanical properties. Macromol. Mater. Eng. 2016;301(3):328–336. https://doi.org/10.1002/mame.201500310

23. Schenk R.K., Buser D. Osseointegration: a reality. Periodontology 2000. 1998;17(1):22–35. https://doi.org/10.1111/j.1600-0757.1998.tb00120.x

24. Freier T., Kunze C., Nischan C., et al. In vitro and in vivo degradation studies for development of a biodegradable patch based on poly(3-hydroxybutyrate). Biomaterials. 2002;23(13):2649–2657. https://doi.org/10.1016/S0142-9612(01)00405-7

25. Rogovina S., Aleksanyan K., Grachev A., Gorenberg A. Investigation of Structure and Properties of Biodegradable Compositions of Polylactide with Ethyl Cellulose and Chitosan Plasticized by Poly(Ethylene Glycol). Science Journal of Volgograd State University. Technology and innovations. 2014;6(15):73–85. https://doi.org/10.15688/jvolsu10.2014.6.7

26. Shibryaeva L.S., Shatalova O.V., Krivandin A.V., et al. Specific structural features of crystalline regions in biodegradable composites of poly-3-hydroxybutyrate with chitosan. Russ. J. Appl. Chem. 2017;90(9):1443–1453. https://doi.org/10.1134/S1070427217090117

27. Tertyshnaya Yu.V., Shibryaeva L.S. Degradation of poly(3-hydroxybutyrate) and its blends during treatment with UV light and water. Polymer Science. Series B. 2013;55(3–4):164–168. https://doi.org/10.1134/S1560090413030068 [Original Russian Text: Tertyshnaya Yu.V., Shibryaeva L.S. Degradation of poly(3-hydroxybutyrate) and its blends during treatment with UV light and water. Vysokomolekulyarnye Soedineniya. Ser. B. 2013;55(3):363–368. (in Russ.). https://doi.org/10.7868/S0507547513030124 ]

28. Bogatova I.B. Obtaining biosynthetic polymer packaging materials is a solution to the problem of polymer waste. Vestnik Volzhskogo universiteta im. V.N. Tatishcheva = Vestnik of V.N. Tatischev Volzhsky University. 2015;23(1):95–100 (in Russ.).

29. Muraev A.A., Ivanov S.Yu., Artifeksova A.A., Ryabova V.M., Volodina E.V., Polyakova I.N. Biological properties study of a new osteoplastic nondemineralized collagen-based material containing vascular endothelial growth factor in bone defect replacement. Sovremennye tekhnologii v meditsine = Modern Technologies in Medicine. 2012;(1):21–26 (in Russ). http://www.stm-journal.ru/ru/numbers/2012/1/847/pdf

30. Iordanskii A.L., Ol’khov A.A., Pankova Yu.N., Bonartsev A.P., Bonartseva G.A., Popov V.O. Hydrophilicity impact upon physical properties of the environmentally friendly poly(3-hydroxybutyrate) blends: modification via blending. Macromolecular Symposia. Special Issue: Fillers, Filled Polymers and Polymer Blends. 2006;233(1):108–116. https://doi.org/10.1002/masy.200690005

31. Lique-Agudo V., Hierro-Oliva M., Gallardo-Moreno M., Gonzalez-Martin Ml. Effect of plasma treatment on the surface properties of polylactic acid films. Polymer Testing. 2021;96:107097. https://doi.org/10.1016/j.polymertesting.2021.107097

32. Sadi R.K., Fechine G.J.M., Demarquette N.R. Photodegradation of poly (3-hydroxybutyrate). Polym. Degrad. Stab. 2010;95(12):2318–2327. https://doi.org/10.1016/j.polymdegradstab.2010.09.003

33. Artsis M.I., Bonartsev A.P., Iordanskii A.L., et al. Biodegradation and Medical Application of Microbial Poly (3-hydroxybutyrate). Mol. Cryst. Liq. Cryst. 2012;555(1):232–262. https://doi.org/10.1080/15421406.2012.635549

34. Zhu B., Bailey S.R., Mauli A.C. Calcification of primary human osteoblast cultures under flow conditions using polycaprolactone scaffolds for intravascular applications. J. Tissue Eng. Regen. Med. 2012;6(9):687–695. https://doi.org/10.1002/term.472

35. Yu H., Wooley P.H., Yang S.Y. Biocompatibility of Poly-ε-caprolactone-hydroxyapatite composite on mouse bone marrow-derived osteoblasts and endothelial cells. J. Orthop. Surg. Res. 2009;4:5. https://doi.org/10.1186/1749-799X-4-5

36. Shumilova A.A., Nikolaeva E.D. Differentiation of MMSCs into osteoblasts on porous 3d-carriers from poly-3-hydroxybutyrate. Zhurnal Sibirskogo federal’nogo universiteta. Seriya: Biologiya = Journal of the Siberian Federal University. Biology. 2016;9(1):53–62 (in Russ.).

37. Ji S., Guvendiren M. Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs. Front. Bioeng. Biotechnol. 2017;5:23. https://doi.org/10.3389/fbioe.2017.00023

38. Gurkan U.A., El Assal R., Yildiz S.E., Sung Y., Trachtenberg A.J., Kuo W.P., Demirci U. Engineering Anisotropic Biomimetic Fibrocartilage Microenvironment by Bioprinting Mesenchymal Stem Cells in Nanoliter Gel Droplets. Mol. Pharmaceutics. 2014;11(7):2151–2159. https://doi.org/10.1021/mp400573g

39. Povernov P.A., Shibryaeva L.S. Scientific approaches to the development of materials based on compositions of poly-3-hydroxybutyrate and polylactide for bone implants. Innovatsii v sozdanii materialov i metodov dlya sovremennoi meditsiny (Innovations in the Creation of Materials and Methods for Modern Medicine): Proceedings of the regional conference. 2020;173–179 (in Russ.).

40. Puppi D., Mota C., Gazzarri M. Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering. Biomed. Microdevices. 2012;14(6):1115–1127. https://doi.org/10.1007/s10544-012-9677-0

41. Zhang H., Mao X., Zhao D. Three dimensional printed polylactic acid-hydroxyapatite composite scaffolds for prefabricating vascularized tissue engineered bone: An in vivo bioreactor model. Sci. Rep. 2017;7(1):15255. https://doi.org/10.1038/s41598-017-14923-7

42. Cui H., Zhu W., Holmes B., Zhang L.G. Biologically Inspired Smart Release System Based on 3D Bioprinted Perfused Scaffold for Vascularized Tissue Regeneration. Adv. Sci. 2016;3(8):1600058. https://doi.org/10.1002/advs.201600058

43. Ivanov S.Yu., Mukhametshin R.F., Muraev A.A., Bonartsev A.P., Ryabova V.M. Synthetic materials used in dentistry to fill bone defects. Sovremennye problemy nauki i obrazovaniya = Modern Problems of Science and Education. 2013;(1):60 (in Russ).

44. Krut’ko V.K., Kulak A.I., Lesnikovich L.A., Trofimova I.V., Musskaya O.N., Zhavnerko G.K., Paribok I.V. Influence of the dehydration procedure on the physicochemical properties of nanocrystalline hydroxylapatite xerogel. Russ. J. Gen. Chem. . 2007;77(3):336–342. https://doi.org/10.1134/S1070363207030036 [Original Russian Text: Krut’ko V.K., Kulak A.I., Lesnikovich L.A., Trofimova I.V., Musskaya O.N., Zhavnerko G.K., Paribok I.V. Influence of the dehydration procedure on the physicochemical properties of nanocrystalline hydroxylapatite xerogel. Zhurnal obshchei khimii. 2007;77(3):366–373 (in Russ).]

45. Gorshenev V.N., Ziangirova M.Yu., Kolesov V.V., Krasnopol’skaya L.M., Prosvirin A.A., Teleshev A.T. New additive technologies for forming complex bone structures for medical and biological applications. Radioelektronika. Nanosistemy. Informatsionnye tekhnologii = Radioelectronics. Nanosystems. Information Technologies. 2019;11(3):369–390. https://doi.org/10.17725/rensit.2019.11.369

46. Chappard D., Guillaume B., Mallet R., PascarettiGrizon F., Baslé M.F., Libouban H. Sinus lift augmentation and beta-TCP: a microCT and histologic analysis on human bone biopsies. Micron. 2010;41(4):321–326. https://doi.org/10.1016/j.micron.2009.12.005

47. Shigeishi H., Takechi M., Nishimura M., Takamoto M., Minami M., Ohta K., Kamata N. Clinical evaluation of novel interconnected porous hydroxyapatite ceramics (IP-CHA) in a maxillary sinus floor augmentation procedure. Dent. Mater. J. 2012;31(1):54–60. https://doi.org/10.4012/dmj.2011-089

48. Ebrahimi M., Pripatnanont P., Monmaturapoj N., Suttapreyasri S. Fabrication and characterization of novel nano hydroxyapatite/β-tricalcium phosphate scaffolds in three different composition ratios. J. Biomed. Mater. Res. A. 2012;100(9):2260–2268. https://doi.org/10.1002/jbm.a.34160

49. Sukovatykh B.S., Polevoy Yu.Yu., Netyaga A.A., Blinkov Yu.Yu., Zhukovskiy V.A. Comparative experimentalmorphological research of light and light strengthened endoprosthesis for hernioplasty. Novosti Khirurgii. 2018;26(4):402–411 (in Russ).

50. Eisenakh I.A., Bakarev M.A., Lapiy G.A., Moses V.G., Moses K.B. Study of tissue inflammatory response to implantation of a biodegradable polymer compared to polypropylene in an animals experiment. Meditsina v Kuzbasse = Medicine in Kuzbass. 2020;19(3):13–20 (in Russ.). https://doi.org/10.24411/2687-0053-2020-10022

51. Chang P., Liu B., Liu C., Chou H., Ho M., Liu H. Bone tissue engineering with novel rhBMP2-PLLA composite scaffolds. J. Biomed. Mater. Res. A. 2007;81(4):771–780. https://doi.org/10.1002/jbm.a.31031

52. Ol’hov A.A., Muraev A.A., Volkov A.V., Ivashkevich S.G., Kim E.V., Pozdnyakov M.S., Staroverova O.V., Iordanskij A.L., Gorshenev V.N. Structure and properties of bioresorbed materials based on polylactide for regenerative medicine. Vse Materialy. Entsiklopedicheskii Spravochnik = All materials. Encyclopaedic Reference Manual. 2021;(1):7–15 (in Russ.).

53. Yeo J.C.C., Muiruri J.K., Thitsartarn W., Li Z., He C. Recent advances in the development of biodegradable PHB-based toughening materials: Approaches, advantages and applications. Mate. Sci. Eng.: C. 2018;92:1092–1116. https://doi.org/10.1016/j.msec.2017.11.006

54. Sadat-Shojai M., Khorasani M.-T., Jamshidi A. A new strategy for fabrication of bone scaffolds using electrospun nano-HAp/PHB fibers and protein hydrogels. Chem. Eng. J. 2016;289:38–47. https://doi.org/10.1016/j.cej.2015.12.079

55. Gumel A.M., Aris M.H., Annuar M.S.M. Modification of Polyhydroxyalkanoates (PHAs). In: Ipsita R., Visakh P.M. (Eds.). Polyhydroxyalkanoate (PHA) Based Blends. Composites and Nanocomposites. 2016. P. 141–182. https://doi.org/10.1039/9781782622314-00141

56. Krut’ko E.T., Prokopchuk N.R., Globa A.I. Tekhnologiya biorazlagaemykh polimernykh materialov (Technology of Biodegradable Polymer Materials). Minsk: BSTU; 2014.105 p. (in Russ.). ISBN 978-985-530-354-2.

57. Griffin G.J.L. Starch polymer blends. Polymer Degradation and Stability. 1994;45(2):241–247. https://doi.org/10.1016/0141-3910(94)90141-4

58. Gomzyak V.I., Puchkov A.A., Artamonova N.E., Polyakov D.K., Simakova G.A., Gritskova I.A., Chvalun S.N. Physico-chemical properties of biodegradable hyperbranched polyester polyol based on 2.2-bis(methylol)propionic acids. Tonk. Khim. Technol. = Fine Chem. Technol. 2018;13(4):67–73 (in Russ.). https://doi.org/10.32362/24106593-2018-13-4-67-73

59. Gomzyak V.I., Kamyshinsky R.A., Chvalun S.N., Artamonova N.E., Kovtun I.D. Gritskova I.A. Heterophase polymerization of styrene in the presence of boltorn polyester polyol. Polym. Sci. Ser. B. 2020;62(1):22–29. https://doi.org/10.1134/S156009041905004X [Original Russian Text: Gomzyak V.I., Artamonova N.E., Kovtun I.D. Kamyshinsky R.A., Gritskova I.A. Chvalun S.N. Heterophase polymerization of styrene in the presence of boltorn polyester polyol. Vysokomolekulyarnye Soedineniya. Ser. B. 2020;62(1):26–34. (in Russ.). https://doi.org/10.31857/S2308113919050048 ]

60. Sedush, N.G., Kadina, Y.A., Razuvaeva, E.V. et al. Nanoformulations of Drugs Based on Biodegradable Lactide Copolymers with Various Molecular Structures and Architectures. Nanotechnol. Russia. 2021;16(4):421–438. https://doi.org/10.1134/S2635167621040121 [Original Russian Text: Sedush N.G., Kadina Yu.A., Razuvaeva E.V., Puchkov A.A., Shirokova E.M., Gomzyak V.I., Kalinin K.T., Kulebyakina A.I., Chvalun S.N. Nanoformulations of Drugs Based on Biodegradable Lactide Copolymers with Various Molecular Structures and Architectures. Rossiiskie nanotekhnologii. 2021;16(4):462–481 (in Russ.). https://doi.org/10.1134/S1992722321040117 ]

61. Gomzyak V.I., Sedush N.G., Puchkov A.A., Polyakov D.K., Chvalun S.N. Linear and branched lactide polymers for targeted drug delivery systems. Polym. Sci. Ser. B. 2021;63(3):257–271. https://doi.org/10.1134/S1560090421030064 [Original Russian Text: Gomzyak V.I., Sedush N.G., Puchkov A.A., Polyakov D.K., Chvalun S.N. Linear and branched lactide polymers for targeted drug delivery systems. Vysokomolekulyarnye Soedineniya. Ser. B. 2021;63(3):190–206. (in Russ.). https://doi.org/10.31857/S2308113921030062 ]

62. Becker S.T., Douglas T., Acil Y., Seitz H., Sivananthan S., Wiltfang J., Warnke P.H. Biocompatibility of individually designed scaffolds with human periosteum for use in tissue engineering. J. Mater. Sci.: Mater. Med. 2010;21(4):1255–1262. https://doi.org/10.1007/s10856-009-3878-y

63. Panayotidou E., Kroustalli A., Baklavaridis A., Zuburtikudis I., Achilias D.S., Deligianni D. Biopolyester-based nanocomposites: structural, thermo-mechanical and biocompatibility characteristics of poly(3-hydroxybutyrate)/ montmorillonite clay nanohybrids. J. Appl. Polym. Sci. 2015;132(11):41628. https://doi.org/10.1002/app.41628

64. Volova T., Shishatskaya E., Sevastianov V., Efremov S., Mogilnaya O. Results of biomedical investigations of PHB and PHB/PHV fibers. Biochem. Eng. J. 2003;16(2):125–133. https://doi.org/10.1016/s1369-703x(03)00038-x

65. Chen X., Yang X., Pan J., Wang L., Xu K. Degradation Behaviors of Bioabsorbable P3/4HB Monofilament Suture, in Vitro and in Vivo. J. Biomed. Mater. Res. B.: Appl. Biomater. 2010;92B:447–455. https://doi.org/10.1002/jbm.b.31534

66. Cao W., Wang A., Jing D., Gong Y., Zhao N., Zhang X. Novel biodegradable films and scaffolds of chitosan blended with poly (3-hydroxybutyrate). J. Biomater. Sci. Polym. Ed. 2005;16(11):1379–1394. https://doi.org/10.1163/156856205774472308

67. Raghunatha K., Sato H., Takahashi I. Intermolecular hydrogen bondings in the poly(3-hydroxybutyrate) and chitin blends: their effects on the crystallization behavior and crystal structure of poly(3-hydroxybutyrate). Polymer. 2015;75:141–150. https://doi.org/10.1016/j.polymer.2015.08.011

68. Ivantsova E.L., Iordanskii A.L., Kosenko R.Y., et al. Poly(3-hydroxybutyrate)-chitosan: a new biodegradable composition for prolonged delivery of biologically active substances. Pharm. Chem. J. 2011;45(1):51–55. https://doi.org/10.1007/s11094-011-0559-1 [Original Russian Text: Ivantsova E.L., Iordanskii A.L., Kosenko R.Y., et al. Poly(3-hydroxybutyrate)-chitosan: a new biodegradable composition for prolonged delivery of biologically active substances. Khimiko-Farmatsevticheskii Zhurnal. 2011;45(1):39–44.]

69. Shibryaeva L.S., Gorshenev V.N., Krashennikov V.G. Thermal properties of porous polylactide. Polym. Sci. Ser. A. 2019;61(2):162–174. https://doi.org/10.1134/ S0965545X19020123

70. Wu L., Chen S., Li Z., Xu K., Chen G.-Q. Synthesis, characterization and biocompatibility of novel biodegradable poly[((R)-3-hydroxybutyrate)-block-(D,L-lactide)-block-(εcaprolactone)] triblock copolymers. Polym. Int. 2008;57(7):939–949. https://doi.org/10.1002/pi.2431

71. Di Lorenzo M.L., Righetti M.C. Evolution of crystal and amorphous fractions of poly[(R)-3-hydroxybutyrate] upon storage. J. Therm. Anal. Calorim. 2013;112(3):1439–1446. https://doi.org/10.1007/s10973-012-2734-3

72. Sun Y., Yang L., Lu X., He C. Biodegradable and renewable poly(lactide)–lignin composites: synthesis, interface and toughening mechanism. J. Mater. Chem. A. 2015;3(7):3699–3709. https://doi.org/10.1039/C4TA05991C

73. Muiruri J.K., Liu S., Teo W.S., Kong J., He C. Highly biodegradable and tough polylactic acid-cellulose nanocrystal composite. ACS Sustainable Chem. Eng. 2017;5(5):3929–3937. https://doi.org/10.1021/acssuschemeng.6b03123

74. Crétois R., Chernal J.-M., Sheibat-Othman N., Monnier A., Martin C., Astruz O., Kurusu R., Demarquette N.R. Physical explanations about the improvement of polyhydroxybutyrate ductility: hidden effect of plasticizer on physical ageing. Polymer. 2016;102:176–182. https://doi.org/10.1016/j.polymer.2016.09.017

75. Kabe T., Tsuge T., Kasuya K., Takemura A., Hikima T., Takata M., Iwata T. Physical and Structural Effects of Adding Ultrahigh-Molecular-Weight Poly[(R)-3-hydroxybutyrate] to Wild-Type Poly[(R)-3-hydroxybutyrate]. Macromolecules. 2012;45(4):1858–1865. https://doi.org/10.1021/ma202285c

76. Kabe T., Hongo C., Tanaka T., Hikima T., Takata M., Iwata T. High tensile strength fiber of poly[(R)-3hydroxybutyrate-co-(R)-3-hydroxyhexanoate] processed by two-step drawing with intermediate annealing. J. Appl. Polym. Sci. 2015;132(2):41258. https://doi.org/10.1002/app.41258


Supplementary files

1. Possible ways for hardening of polyhydroxybutyrate [53].
Subject
Type Исследовательские инструменты
View (173KB)    
Indexing metadata

This paper is a review of modern materials based on biodegradable polymers used in modern conditions as bone implants as well as the paper analyzes scientific areas in which the development of implants is carried out taking into account the basic properties of the materials from which they are made.

Review

For citations:


Povernov P.A., Shibryaeva L.S., Lusova L.R., Popov A.A. Modern polymer composite materials for bone surgery: Problems and prospects. Fine Chemical Technologies. 2022;17(6):514-536. https://doi.org/10.32362/2410-6593-2022-17-6-514-536

Views: 562


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)