Preview

Fine Chemical Technologies

Advanced search

Obtaining phthalate substituted post-consumer polyethylene terephthalate and its isothermal crystallization

https://doi.org/10.32362/2410-6593-2022-17-2-164-171

Abstract

Objects. Due to the polymer waste accumulation, the search for new directions for their utilization is urgent. Chemical recycling methods are of considerable interest, which allow one to obtain the original monomers or change the compositions of the copolymers. From the point of view of building a circular economy, a promising material is polyethylene terephthalate (PET), on the basis of which amorphous copolyesters can be obtained. The study aimed to analyze the simultaneous glycolysis and interchain exchange reactions of PET in the presence of the oligoethylene phthalate modifier with hydroxyl end groups and the study of isothermal crystallization of poly(ethylene phthalate-co-terephthalates) with different phthalate contents obtained in this way.

Methods. Oligoethylene phthalate is synthesized by polycondensation. Poly(ethylene phthalateco-terephthalates) were obtained by the interaction of post-consumer PET with oligoethylene phthalate. The composition of the oligomer and copolymers was confirmed using Fourier-transform infrared spectroscopy, thermal characteristics and crystallization half-times were determined by differential scanning calorimetry.

Results. In this work, the use of the post-consumer PET chemical recycling process, aimed at obtaining copolyesters under the influence of small modifier amounts was proposed. The process consisted in carrying out the combined interchain exchange and degradation with a complex oligoester different from PET. Poly(ethylene phthalate-co-terephthalate) copolymers were obtained via reaction of post-consumer poly(ethylene terephthalate) flakes and synthesized oligoethylene phthalate resin in the melt phase in the absence of catalyst. The effect of phthalate concentration in polymer on the isothermal crystallization of phthalate substituted poly(ethylene terephthalate) was estimated.

Conclusions. The hypothesis about the possibility of using an oligoester modifier to obtain the PET-based copolymer at the high rate and without reducing the molecular weight to values characteristic of a monomer or oligomer has been confirmed. The process can be used to obtain random copolyesters based on post-consumer PET. The phthalate unit concentration increase is followed by decrease in the glass transition temperature, temperature and heat of fusion, and increase in crystallization half-times. Phthalate has a better ability to retard PET crystallization than 2-methyl-1,3-propanediol or furandicarboxylic acid, but is inferior to some of the other modifiers known.

About the Authors

K. A. Kirshanov
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Kirill A. Kirshanov, Postgraduate Student, Engineer, S.S. Medvedev Department of Chemistry and Technology of Macromolecular Compounds

86, Vernadskogo pr., Moscow, 119571


Competing Interests:

The authors declare no conflicts of interest



A. Yu. Gervald
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Alexander Yu. Gervald, Cand. Sci. (Chem.), Associate Professor, S.S. Medvedev Department of Chemistry and Technology of Macromolecular Compounds

86, Vernadskogo pr., Moscow, 119571


Competing Interests:

The authors declare no conflicts of interest



R. V. Toms
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Roman V. Toms, Cand. Sci. (Chem.), Associate Professor, S.S. Medvedev Department of Chemistry and Technology of Macromolecular Compounds

86, Vernadskogo pr., Moscow, 119571


Competing Interests:

The authors declare no conflicts of interest



A. N. Lobanov
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Andrey N. Lobanov, Cand. Sci. (Chem.), Associate Professor, S.S. Medvedev Department of Chemistry and Technology of Macromolecular Compounds

86, Vernadskogo pr., Moscow, 119571


Competing Interests:

The authors declare no conflicts of interest



References

1. Scheirs J., Long T.E. Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters. London: John Wiley & Sons, Ltd; 2003. 750 p. https://doi.org/10.1002/0470090685

2. George N., Kurian T. Recent Developments in the Chemical Recycling of Postconsumer Poly(ethylene terephthalate) Waste. Ind. Eng. Chem. Res. 2014;53(37):14185–14198. https://doi.org/10.1021/ie501995m

3. Khoonkari M., Haghighi A.H., Sefidbakht Y., Shekoohi K., Ghaderian A. Chemical Recycling of PET Wastes with Different Catalysts. Int. J. Polym. Sci. 2015;1–11. https://doi.org/10.1155/2015/124524

4. Raheem A.B., Noor Z.Z., Hassan A., Hamid M.K.A., Samsudin S.A., Sabeen A.H. Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: A review. J. Clean. Prod. 2019;225:1052–1064. https://doi.org/10.1016/j.jclepro.2019.04.019

5. Liu B., Lu X., Ju Z., Sun P., Xin J., Yao X., Zhou Q., Zhang S. Ultrafast homogeneous glycolysis of waste polyethylene terephthalate via a dissolution-degradation strategy. Ind. Eng. Chem. Res. 2018;57(48):16239–16245. https://doi.org/10.1021/acs.iecr.8b03854

6. Kirshanov K.A., Gerval’d A.Yu., Toms R.V. Оbtaining oligoesters by directed glycolytic destruction of polyethylene terephthalate waste. Plasticheskie massy. 2020;1(11–12):51–53 (in Russ.). https://doi.org/10.35164/0554-2901-2020-11-12-51-53

7. Kirshanov K.A., Toms R.V. Study of polyethylene terephthalate glycolysis with a mixture of bis(2-hydroxyethyl) terephthalate and its oligomers. Plasticheskie massy. 2021;1(3–4):50–52 (in Russ.). https://doi.org/10.35164/0554-2901-2021-3-4-50-52

8. El Mejjatti A., Harit T., Riahi A., Khiari R., Bouabdallah I., Malek F. Chemical recycling of poly(ethylene terephthalate). Application to the synthesis of multiblock copolyesters. eXPRESS Polymer Letters. 2014;8(8):544–553. https://doi.org/10.3144/expresspolymlett.2014.58

9. Borisov V.A. Some ways of recycling the secondary polyethylene terephthalate. Izvestiya Kabardino-Balkarskogo Gosudarstvennogo Universiteta = Proceeding of the Kabardino-Balkarian State University. 2013;3(5):18–23 (in Russ.).

10. Colomines G., Robin J.-J., Tersac G. Study of the glycolysis of PET by oligoesters. Polymer. 2005;46(10):3230–3247. https://doi.org/10.1016/j.polymer.2005.02.047

11. Litmanovich A.D., Plate N.A., Kudryavtsev Y.V. Reactions in polymer blends: interchain effects and theoretical problems. Progress in Polymer Science. 2002;27:915–970. https://doi.org/10.1016/S0079-6700(02)00003-5

12. Krentsel’ L.B., Makarova V.V., Kudryavtsev Ya.V., Govorun E.N., Litmanovich A.D., Markova G.D., Vasnev V.A., Kulichikhin V.G. Interchain exchange and interdiffusion in blends of poly(ethylene terephthalate) and poly(ethylene naphthalate). Polym. Sci. Ser. A. 2009;51(11–12):1241–1248. https://doi.org/10.1134/S0965545X09110091

13. Heidarzadeh N., Rafizadeh M., Taromi F.A., del Valle L.J., Franco L., Puiggali J. Biodegradability and biocompatibility of copoly(butylene sebacate-coterephthalate) s. Polym. Degrad. Stab. 2017;135:18–30. https://doi.org/10.1016/j.polymdegradstab.2016.11.013

14. Collins S., Peace S.K., Richards R.W., MacDonald W.A., Mills P., King S.M. Transesterification in poly(ethylene terephthalate). Molecular weight and end group effects. Macromolecules. 2000;33(8):2981–2988. https://doi.org/10.1021/ma991637

15. Turner S.R. Development of amorphous copolyesters based on 1,4-cyclohexanedimethanol. J. Polym. Sci.: A: Polym. Chem. 2004;42(23):5847–5852. https://doi.org/10.1002/pola.20460

16. Shirali H., Rafizadeh M., Taromi F.A. Synthesis and characterization of amorphous and impermeable poly(ethylene-co-1,4-cyclohexylenedimethylene terephthalate)/ organoclay nanocomposite via in situ polymerization. J. Compos. Mater. 2014;48(3):301–315. https://doi.org/10.1177/0021998312471566

17. Granado A., Iturriza L., Eguiazabal J.I. Structure and mechanical properties of blends of an amorphous polyamide and an amorphous copolyester. J. Appl. Polym. Sci. 2014;131(18):40785. https://doi.org/10.1002/app.40785

18. Tingting C., Guodong J., Jun Z. Isothermal crystallization behavior and crystal structure of poly(ethyleneterephthalate-co-1,4-cyclohexylenedimethyleneterephthalate) (P(ET/CT)) copolyesters. Cryst. Res. Technol. 2014;49(4):232–243. https://doi.org/10.1002/crat.201300369

19. Tingting C., Guodong J., Jun Z. Alkali resistance of poly(ethylene terephthalate) (PET) and poly(ethylene glycolco-1,4-cyclohexanedimethanol terephthalate) (PETG) copolyesters: the role of composition. Polym. Degrad. Stab. 2015;120:232–243. https://doi.org/10.1016/j.polymdegradstab.2015.07.008

20. Seung W.H., Hee S.M., Jong S.B., Eui S.Y., Seung S.I. Synthesis and crystallization behaviors of modified PET copolymers. Fibers Polym. 2012;1(2):76–82. https://doi.org/10.1007/BF02875189

21. Nagahata R., Sugiyama J., Velmathi S., Nakao Y., Goto M., Takeuchi K. Synthesis of poly(ethylene terephthalateco-isophthalate) by copolymerization of ethylene isophthalate cyclic dimer and bis(2-hydroxyethyl) terephthalate. Polym. J. 2004;36(6):483–488. https://doi.org/10.1295/polymj.36.483

22. Liyuan S., Yajie Z., Jinggang W., Fei L., Zhen J., Xiaoqing L., Jin Z. 2,5-Furandicarboxylic acid as a sustainable alternative to isophthalic acid for synthesis of amorphous poly(ethylene terephthalate) copolyester with enhanced performance. J. Appl. Polym. Sci. 2018;47186. https://doi.org/10.1002/app.47186

23. Kim J.H., Lee S.Y., Park J.H., Lyoo W.S., Noh S.K. Kinetics of polycondensation and copolycondensation of bis(3-hydroxypropyl terephthalate) and bis(2-hydroxyethyl terephthalate). J. Appl. Polym. Sci. 2000;77(3):693–698. https://doi.org/10.1002/(SICI)1097-4628(20000718)77:3<693::AID-APP24>3.0.CO;2-Q

24. Lewis C.L., Spruiell J.E. Crystallization of 2-methyl- 1,3-propanediol substituted poly(ethylene terephthalate). I. Thermal behavior and isothermal crystallization. J. Appl. Polym. Sci. 2006;100(4):2592–2603. https://doi.org/10.1002/app.22786

25. Tsai Y., Fan C-H., Wu J-H. Synthesis, microstructures and properties of amorphous poly(ethylene terephthalate-cotricyclodecanedimethylene terephthalate). J. Polym. Res. 2016;23(3):23–42. https://doi.org/10.1007/s10965-016-0933-5

26. Legrand S., Jacquel N., Amedro H., Saint-Loup R., Pascault J.-P., Rousseau A., Fenouillot F. Synthesis and properties of poly(1,4-cyclohexanedimethylene-coisosorbide terephthalate), a biobased copolyester with high performances. Eur. Polym. J. 2019;115:22–29. https://doi.org/10.1016/j.eurpolymj.2019.03.018

27. Wang B., Zhang Y., Song P., Guo Z., Cheng J., Fang Z. Synthesis, characterization, and properties of degradable poly(l-lactic acid)/poly(butylene terephthalate) copolyesters containing 1,4-cyclohexanedimethanol. J. Appl. Polym. Sci. 2011;120(5):2985–2995. https://doi.org/10.1002/app.33373

28. Lee B., Lee J.W., Lee S.W., Yoon J., Ree M. Synthesis and non-isothermal crystallization behavior of poly(ethylene phthalate-co-terephthalate)s. Polym. Eng. Sci. 2004;44(9):1682–1691. https://doi.org/10.1002/pen.20168

29. Connor D.M., Allen S.D., Collard D.M., Liotta C.L., Schiraldi D.A. Effect of comonomers on the rate of crystallization of pet: U-turn comonomers. J. Appl. Polym. Sci. 2001;81(7):1675–1682. https://doi.org/10.1002/app.1599

30. Du B., Yang R., Xie X. Investigation of hydrolysis in poly(ethylene terephthalate) by FTIR-ATR. Chin. J. Polym. Sci. 2014;32(2):230–235. https://doi.org/10.1007/s10118-014-1372-6

31. Descamps N., Fernandez F., Heijboer P., Saint-Loup R., Jacquel N. Isothermal crystallization kinetics of poly(ethylene terephthalate) copolymerized with various amounts of isosorbide. Appl. Sci. 2020;10(3):1046. https://doi.org/10.3390/app10031046

32. Terzopoulou Z., Papadopoulos L., Zamboulis A., Papageorgiou D.G., Papageorgiou G.Z., Bikiaris D.N. Tuning the properties of furandicarboxylic acid-based polyesters with copolymerization: a review. Polymers. 2020;12(6):1209. https://doi.org/10.3390/polym12061209


Supplementary files

1. Fourier-transform infrared spectrum of the oligoethylene phthalate sample
Subject
Type Исследовательские инструменты
View (378KB)    
Indexing metadata
  • Chemical recycling of polyethylene terephthalate (PET) under the action of oligoesters (less than 15 mol %) with hydroxyl end groups allowed obtaining modified high molecular weight copolyesters.
  • The recycling process was based on the simultaneous glycolysis and interchain exchange reactions.
  • The introduction of phthalate units into PET effectively reduced the glass transition temperature, the copolymer temperature and fusion heat, and also increased its crystallization half-time.

Review

For citations:


Kirshanov K.A., Gervald A.Yu., Toms R.V., Lobanov A.N. Obtaining phthalate substituted post-consumer polyethylene terephthalate and its isothermal crystallization. Fine Chemical Technologies. 2022;17(2):164-171. https://doi.org/10.32362/2410-6593-2022-17-2-164-171

Views: 734


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)