Screening medicinal plant extracts for xanthine oxidase inhibitory activity
https://doi.org/10.32362/2410-6593-2022-17-2-131-139
Abstract
Objectives. The study aimed to test the ethanol extracts of ten medicinal plants for xanthine oxidase inhibitory activity.
Methods. The degree of xanthine oxidase inhibitory activity was determined by measuring the absorbance spectrophotometrically at 290 nm, which is associated with uric acid formation. The selected medicinal plants included Piper lolot C.DC. (Piperaceae), Pandanus amaryllifolius R.(Pandanaceae), Brassica juncea L. (Brassicaceae), Piper betle L. (Piperaceae), Perilla frutescens L. (Lamiaceae), Anacardium occidentale L. (Anacardiaceae), Polygonum barbatum L. (Polygonaceae), Artocarpus Altilis P. (Moraceae), Vitex negundo L. (Verbenaceae), Annona squamosal L. (Annonaceae), which were selected based on folk medicine.
Results. The results showed that the Piper betle L. has a strong ability to inhibit xanthine oxidase with an IC50 value of up to 1.18 μg/mL, compared to allopurinol 1.57 μg/mL. Different parts of Piper betle L. were compared and the leaves of Piper betle L. showed the best value for xanthine oxidase inhibitory and antioxidant activity.
Conclusions. Piper betle L. showed the best potential for inhibition of xanthine oxidase among ten medicinal plants. Piper betle L. leaf extract showed strong xanthine oxidase inhibitory and antioxidant activity, compared to the whole plant, and the stem extract, which promises to be applied in the treatment of gout.
About the Authors
A. C. HaViet Nam
Anh C. Ha, PhD., Doctor of Medicinal Chemistry, Faculty of Chemical Engineering
268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City; Linh Trung Ward, Thu Duc District, Ho Chi Minh City
Competing Interests:
The authors declare no conflicts of interest
Ch. D.P. Nguyen
Viet Nam
Chinh D.P. Nguyen, BEng., Postgraduate Student, Faculty of Chemical Engineering
268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City; Linh Trung Ward, Thu Duc District, Ho Chi Minh City
Competing Interests:
The authors declare no conflicts of interest
T. M. Le
Viet Nam
Tan M. Le, MSc., Master of Chemical Engineering, Faculty of Chemical Engineering
268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City; Linh Trung Ward, Thu Duc District, Ho Chi Minh City
Competing Interests:
The authors declare no conflicts of interest
References
1. Ragab G., Elshahaly M., Bardin T. Gout: An old disease in new perspective–A review. J. Adv. Res. 2017;8(5):495–511. https://doi.org/10.1016/j.jare.2017.04.008
2. Safiri S., Kolahi A.A., Cross M., Carson‐Chahhoud K., Hoy D., Almasi-Hashiani A., et al. Prevalence, incidence, and years lived with disability due to gout and its attributable risk factors for 195 countries and territories 1990–2017: A systematic analysis of the global burden of disease study 2017. Arthritis & Rheumatology. 2020;72(11):1916–27. https://doi.org/10.1002/art.41404
3. Kuo C.-F., Grainge M.J., Zhang W., Doherty M. Global epidemiology of gout: prevalence, incidence and risk factors. Nat. Rev. Rheumatol. 2015;11(11):649–662. https://doi.org/10.1038/nrrheum.2015.91
4. Borges F., Fernandes E., Roleira F. Progress towards the discovery of xanthine oxidase inhibitors. Curr. Med. Chem. 2002;9(2):195–217. https://doi.org/10.2174/0929867023371229
5. Kostić D.A., Dimitrijević D.S., Stojanović G.S., Palić I.R., Đorđević A.S., Ickovski J.D. Xanthine oxidase: isolation, assays of activity, and inhibition. J. Chem. 2015;2015:294858. https://doi.org/10.1155/2015/294858
6. Theoduloz C., Franco L., Ferro E., Rarschmann G.S. Xanthine oxidase inhibitory activity of Paraguayan Myrtaceae. J. Ethnopharmacol. 1988;24(2-3):179–183. https://doi.org/10.1016/0378-8741(88)90149-3
7. McKendrick M., Geddes A. Allopurinol hypersensitivity. British Medical J. 1979;1(6169):988. https://doi.org/10.1136/bmj.1.6169.988
8. Pacher P., Nivorozhkin A., Szabó C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacolog. Rev. 2006;58(1):87–114. https://doi.org/10.1124/pr.58.1.6
9. Salmerón-Manzano E., Garrido-Cardenas J.A., Manzano-Agugliaro F. Worldwide research trends on medicinal plants. Int. J. Environ. Res. Public Health. 2020;17(10):3376. https://doi.org/10.3390/ijerph17103376
10. Duong-Trung N., Quach L.-D., Nguyen C.-N. Learning deep transferability for several agricultural classification problems. Int. J. Adv. Comput. Sci. Appl. 2019;10(1). http://doi.org/10.14569/IJACSA.2019.0100107
11. Azmi S., Jamal P., Amid A. Xanthine oxidase inhibitory activity from potential Malaysian medicinal plant as remedies for gout. Int. Food Res. J. 2012;19(1):159–165.
12. De Silva G.O., Abeysundara A.T., Aponso M.M.W. Extraction methods, qualitative and quantitative techniques for screening of phytochemicals from plants. Am. J. Essent. Oils Nat. Prod. 2017;5(2):29–32.
13. Kerrouri S., Lrhorfi L., Amal S., Ouafae E., abdellahi Lella O., Bahia B, et al. Qualitative study of bioactive components of dill (Anethum graveolens L.) from Northern Morocco. Eur. Sci. J. 2016;12(27). https://doi.org/10.19044/esj.2016.v12n27p335
14. Nagalingam S., Sasikumar C.S., Cherian K.M. Extraction and preliminary phytochemical screening of active compounds in Morinda citrifolia fruit. Asian J. Pharm. Clin. Res. 2012;5(2):179–81.
15. Sánchez-Rangel J.C., Benavides J., Heredia J.B., Cisneros-Zevallos L., Jacobo-Velázquez D.A. The Folin–Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Anal. Methods. 2013;5(21):5990–5999. https://doi.org/10.1039/C3AY41125G
16. Baba S.A., Malik S.A. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. Journal of Taibah University for Science (JTUSCI). 2015;9(4):449–454. https://doi.org/10.1016/j.jtusci.2014.11.001
17. Do N.H., Le T.M., Nguyen C.D., Ha A.C. Optimization of total flavonoid content of ethanolic extract of Persicaria pulchra (Bl.) Soják for the inhibition of α-glucosidase enzyme. Fine Chem. Technol. 2020;15(4):39–50. https://doi.org/10.32362/2410-6593-2020-15-4-39-50
18. Abd El-Rahman H.S., Abd-ELHak N.A. Xanthine oxidase inhibitory activity and antigout of celery leek parsley and molokhia. Adv. Biochem. 2015;3(4):40–50. https://doi.org/10.11648/j.ab.20150304.11
19. Sharma O.P., Bhat T.K. DPPH antioxidant assay revisited. Food Chem. 2009;113(4):1202–1205. https://doi.org/10.1016/j.foodchem.2008.08.008
20. Mehmood A., Ishaq M., Zhao L., Safdar B., Rehman Au., Munir M., et al. Natural compounds with xanthine oxidase inhibitory activity: A review. Chem. Biol. Drug Des. 2019;93(4):387–418. https://doi.org/10.1111/cbdd.13437
21. Han X., Shen T., Lou H. Dietary polyphenols and their biological significance. Int. J. Mol. Sci. 2007;8(9):950–988. https://doi.org/10.3390/i8090950
22. Rashid M., Fareed M., Rashid H., Aziz H., Ehsan N., Khalid S., et al. Flavonoids and their biological secrets. In: Ozturk M., Hakeem K. (Eds.). Plant and Human Health. 2019;2:579–605. https://doi.org/10.1007/978-3-030-03344-6_24
23. Sieniawska E., Baj T. Tannins. In: Pharmacognosy: Elsevier; 2017. P. 199–232. https://doi.org/10.1016/B978-0-12-802104-0.00010-X
24. Barbosa-Filho J.M., Piuvezam M.R., Moura M.D., Silva M.S., Lima K.V.B., da-Cunha E.V.L., et al. Antiinflammatory activity of alkaloids: A twenty-century review. Rev. Bras. Farmacogn. 2006;16(1):109–139. https://doi.org/10.1590/S0102-695X2006000100020
25. Zulkifli S.A., Abd Gani S.S., Zaidan U.H., Halmi M.I.E. Optimization of total phenolic and flavonoid contents of defatted pitaya (Hylocereus polyrhizus) seed extract and its antioxidant properties. Molecules. 2020;25(4):787. https://doi.org/10.3390/molecules25040787
26. Vikrama Chakravarthi P., Murugesan S., Arivuchelvan A., Sukumar K., Arulmozhi A., Jagadeeswaran A. In vitro xanthine oxidase inhibitory activity of Piper betle and Phyllanthus niruri. J. Pharmacogn. Phytochem. 2018;7(5):959–961.
27. Murata K., Nakao K., Hirata N., Namba K., Nomi T., Kitamura Y., et al. Hydroxychavicol: a potent xanthine oxidase inhibitor obtained from the leaves of betel, Piper betle. J. Nat. Med. 2009;63(3):355–359. https://doi.org/10.1007/s11418-009-0331-y
28. Ghasemzadeh A., Jaafar H.Z., Rahmat A. Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules. 2010;15(6):4324–4333. https://doi.org/10.3390/molecules15064324
29. Pyo Y.-H., Lee T.-C., Logendra L., Rosen R.T. Antioxidant activity and phenolic compounds of Swiss chard (Beta vulgaris subspecies cycla) extracts. Food Chem. 2004;85(1):19–26. https://doi.org/10.1016/S0308-8146(03)00294-2
30. Krishnan E., Akhras K., Sharma H., Marynchenko M., Wu E., Tawk R., et al. Relative and attributable diabetes risk associated with hyperuricemia in US veterans with gout. QJM: An International Journal of Medicine. 2013;106(8):721–729. https://doi.org/10.1093/qjmed/hct093
31. Monfared S.S.M.S., Vahidi H., Abdolghaffari A.H., Nikfar S., Abdollahi M. Antioxidant therapy in the management of acute, chronic and post-ERCP pancreatitis: a systematic review. World J. Gastroenterol: WJG. 2009;15(36):4481–4490. https://doi.org/10.3748/wjg.15.4481
Supplementary files
|
1. (a) TPC and TFC, (b) XO inhibitory activity, and (c) antioxidant activity of different parts of Piper betle L. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(2MB)
|
Indexing metadata ▾ |
- The extracts of ten plant were characterized by determination of the TFC, TPC, and XO inhibitory activity.
- Piper betle had significant XO inhibitory activity.
- The leaf was the part of the Piper betle L. that showed strong XO inhibitory activity and also antioxidant activity compared with stem, and whole plant extract.
Review
For citations:
Ha A.C., Nguyen Ch.D., Le T.M. Screening medicinal plant extracts for xanthine oxidase inhibitory activity. Fine Chemical Technologies. 2022;17(2):131-139. https://doi.org/10.32362/2410-6593-2022-17-2-131-139