Thermal destruction of polymeric fibers in the theory of temporary dependence of strength
https://doi.org/10.32362/2410-6593-2021-16-6-526-540
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Full Text:
Abstract
Objectives. This study mathematically describes the mutual influence of micro- and macrostages of the process of destruction of polymer materials and determines its main parameters and limiting characteristics. In addition, a relationship is established between molecular constants characterizing the structure of a material and those characterizing its macroscopic characteristics of strength. Finally, theoretical representations of the thermokinetics of the process of thermal destruction of polymer fibers from the standpoint of the kinetic thermofluctuation concept are developed, which makes it possible to predict the thermal durability of a sample under thermal loading.
Methods. The structural–kinetic thermofluctuation theory was used to describe the initial stages of the fracture process and to derive a generalized formula for the rate of crack growth. The mathematical theory of cracks is used to describe the thermally stressed state of a material in the vicinity of an internal circular crack under mechanical and thermal loadings of the sample.
Results. A theoretical formula for the full isotherm of durability in the range of mechanical stresses from safe to critical, as well as a theoretical relationship for the time dependence of the strength of polymer fibers under purely thermal loading in the full range of heat loads from safe to critical and at the stage of nonthermal crack growth, is given. The main parameters and limiting characteristics of durability under thermal loading are also indicated.
Conclusions. A generalized structural–kinetic theory of the fracture of polymer fibers under purely thermal action on cracked specimens is presented. The developed theory combines three independent approaches: structural–kinetic (thermofluctuation theory), mechanical, and thermodynamic. The obtained theoretical relations are of practical interest for the development of methods for localization, intensification, and control of the crack growth kinetics.
About the Author
E. M. KartashovRussian Federation
Eduard M. Kartashov Dr. Sci. (Phys.-Math.), Professor, Department of Higher and Applied Mathematics.
86, Vernadskogo pr., Moscow, 119571
Competing Interests:
The author declares no conflicts of interests
References
1. Kartashov E.M., Kudinov V.A. Analiticheskie metody teorii teploprovodnosti i ee prilozhenii (Analytical methods of the theory of heat conduction and its applications). Moscow: URSS; 2012. 1080 p. (in Russ.). ISBN 978-5-9710-4994-4
2. Lee H., Lim C.H.J., Low M.J., Tham N., Murukeshan V.M., Kim Y.-J. Lasers in Additive Manufacturing: A Review. Int. J. of Precis. Eng. Manuf.-Green Tech. 2017;4(3):307-322. https://doi.org/10.1007/s40684-017-0037-7
3. Negi S., Nambolan A.A., Kapil S., Joshi P.S., Manivannan R., Karunakaran K.P., et al. Review on electron beam based additive manufacturing. Rapid Prototyping Journal. 2020;26(3):485-498. https://doi.org/10.1108/RPJ07-2019-0182
4. Bijanzad A., Munir T., Abdulhamid F. Heat-assisted machining of superalloys: a review. Int. J. Adv. Manuf. Technol. 2021. https://doi.org/10.1007/s00170-021-08059-2
5. Nasim H., Jamil Y. Diode lasers: From laboratory to industry. Optics & Laser Technology. 2014;56:211-222. https://doi.org/10.1016/j.optlastec.2013.08.012
6. Nemani S.K., Annavarapu R.K., Mohammadian B., Raiyan A., Heil J., Haque Md.A., et al. Surface Modification of Polymers: Methods and Applications. Adv. Mater. Interfaces. 2018;5(24):1801247. https://doi.org/10.1002/admi.201801247
7. Zhang C. Progress in semicrystalline heat-resistant polyamides. e-Polymers. 2018;18(5):373-408. https://doi.org/10.1515/epoly-2018-0094
8. Fu M.-C., Higashihara T., Ueda M. Recent progress in thermally stable and photosensitive polymers. Polym J. 2018;50(1):57-76. https://doi.org/10.1038/pj.2017.46
9. Peelman N., Ragaert P., Ragaert K., De Meulenaer B., Devlieghere F., Cardon L. Heat resistance of new biobased polymeric materials, focusing on starch, cellulose, PLA, and PHA. Journal of Applied Polymer Science. 2015;132(48):42305. https://doi.org/10.1002/app.42305
10. Rezakazemi M., Sadrzadeh M., Matsuura T. Thermally stable polymers for advanced high-performance gas separation membranes. Progress in Energy and Combustion Science. 2018;66:1-41. https://doi.org/10.1016/j.pecs.2017.11.002
11. Tant M.R., Connell J.W., McManus H.L.N. HighTemperature Properties and Applications of Polymeric Materials. Washington, DC: American Chemical Society; 1995. 264 p. ISBN 978-0-12-801981-8
12. Bilibin A.Y., Zorin I.M. Polymer degradation and its role in nature and modern medical technologies. Russ. Chem.Rev. 2006;75(2):133-145. https://doi.org/10.1070/RC2006v075n02ABEH001213
13. Brinson H.F., Brinson L.C. Characteristics, Applications and Properties of Polymers. In: Brinson H.F., Brinson L.C. (eds.) Polymer Engineering Science and Viscoelasticity: An Introduction. Boston, MA: Springer US; 2008. p. 55-97. https://doi.org/10.1007/978-0-387-73861-1_3
14. Witkowski A., Stec A.A., Hull T.R. Thermal Decomposition of Polymeric Materials. In: Hurley M.J., Gottuk D., Hall J.R., Harada K., Kuligowski E., Puchovsky M., et al. (eds.) Handbook of Fire Protection Engineering. New York, NY: Springer New York; 2016. p. 167-254. https://doi.org/10.1007/978-1-4939-2565-0_7
15. Bogdanov V.L., Guz A.N., Nazarenko V.M. Spatial Problems of the Fracture of Materials Loaded Along Cracks (Review). Int. Appl. Mech. 2015;51(5):489-560. https://doi.org/10.1007/s10778-015-0710-x
16. Sicsic P., Marigo J.-J., Maurini C. Initiation of a periodic array of cracks in the thermal shock problem: A gradient damage modeling. Journal of the Mechanics and Physics of Solids. 2014;63:256-284. https://doi.org/10.1016/j.jmps.2013.09.003
17. Tang S.B., Zhang H., Tang C.A., Liu H.Y. Numerical model for the cracking behavior of heterogeneous brittle solids subjected to thermal shock. International Journal of Solids and Structures. 2016;80:520-531. https://doi.org/10.1016/j.ijsolstr.2015.10.012
18. Regel’ V.R., Slutsker A.I., Tomashevskii E.E. Kineticheskaya priroda prochnosti tverdykh tel (Kinetic nature of the strength of solids). Moscow: Nauka; 1974. 560 p. (in Russ.).
19. Kartashov E.M., Anisimova T.V. Model ideas of thermal fracture on the basis of the theory of strength. Matem. Mod. 2007;19(11):11-22 (in Russ.).
20. Kartashov E.M. Modern concepts of the kinetic thermofluctuation theory of polymer strength. Itogi nauki i tekhniki. Seriya Khimiya i tekhnologiya vysokomolekulyarnykh soedinenii. 1991. V. 27. 112 r. (in Russ.).
21. Kartashov E.M., Tsoi B., Shevelev V.V. Razrushenie plenok i volokon. Strukturno-statisticheskie aspect (Destruction of films and fibers. Structural and statistical aspects). Moscow: URSS; 2015. 779 r. (in Russ.). ISBN 978-5-9710-0944-3
22. Finkel’ V.M. Fizicheskie osnovy tormozheniya razrusheniya (The physical basis of inhibition of destruction). Moscow: Metallurgiya; 1977. 360 r. (in Russ.).
23. Sun C.T., Jin Z.-H. Griffith Theory of Fracture. In: Sun C.T., Jin Z.-H. (eds.) Fracture Mechanics. Boston: Academic Press; 2012. p. 11-24. https://doi.org/10.1016/B978-0-12385001-0.00002-X
24. Frenkel’ Ya.I. Kineticheskaya teoriya zhidkostei (Kinetic theory of liquids). Leningrad: USSR RAS Publishing House; 1945. 424 p. (in Russ.).
25. Bartenev G.M. Prochnost’ i mekhanizmy razrusheniya polimerov (Strength and degradation mechanisms of polymers). Moscow: Khimiya; 1984. 280p. (in Russ.).
26. Gubanov A.I., Chevychelov A.D. On the theory of tensile strength of polymers. Fizika tverdogo tela. 1962;4(4):928-933 (in Russ.).
27. Kerkhof F. Bruchvorqänqe in Gläsern. Frankfurt/ Main: Verlaq Deutsch Gesellschaft; 1970. 340 p.
28. Kuz’min E.A., Pukh V.P. Nekotorye problemy prochnosti tverdogo tela (Some problems of solid strength). Moscow, Leningrad: Izd. Akad. Nauk SSSR; 1959. 386 p. (in Russ.).
29. Bartenev G.M., Razumovskaya I.V., Rebinder P.A. On the theory of spontaneous dispersion of solids. Kolloidnyi zhurnal = Colloid J. 1958;20(5):654-664 (in Russ.).
30. Zlatin N.A., Mochalov S.N., Pugachev G.S., Bragov A.M. Temporary patterns of destruction of metals under intense loads. Fizika tverdogo tela. 1974;16(6):1752-1755 (in Russ.).
31. Borodachev N.M. The thermoelastic problem for an infinite axisymmetrically cracked body. Soviet Applied Mechanics. 1966;2(2):54-58. https://doi.org/10.1007/BF00895610
32. Borodachev N.M. The sinking of a die into the end face of a semi-infinite elastic cylinder. Soviet Applied Mechanics. 1967;3(9):55-58. https://doi.org/10.1007/BF00886390
33. Melan E., Parkus G. Melan E., Parkus G. Temperaturnye napryazheniya, vyzyvaemye statsionarnymi temperaturnymi polyami (Temperature stresses caused by stationary temperature fields). Transl. from German. Moscow: Fizmatgiz; 1958. 167 p. (in Russ.). [Melan E., Parkus H. Wärmespannungen: Infolge Stationärer Temperaturfelder. Wein: Springer Verl.; 1953. 154 p.]
34. Kartashov E.M. Analiticheskie metody v teorii teploprovodnosti tverdykh tel (Analytical methods in the theory of thermal conductivity of solids). Moscow: Vysshaya shkola; 2001. 540 p. (in Russ.). ISBN 5-06-004091-7
35. Kartashov E.M. The Griffith energy problem for brittle polymers. J. Eng. Phys. Thermophys. 2007;80(1):166-175. https://doi.org/10.1007/s10891-007-0023-y
36. Kartashov E.M. Analytical solutions of hyperbolic models of non-stationary thermal conduction. Tonk. Khim. Tekhnol. = Fine Chem. Technol. 2018;13(2):81-90 (in Russ.). https://doi.org/10.32362/2410-6593-2018-13-2-81-90
37.
Supplementary files
|
1. Temperature–time dependence of strength in the full stress range | |
Subject | ||
Type | Research Instrument | |
View
(185KB)
|
Indexing metadata ▾ |
Title | Temperature–time dependence of strength in the full stress range | |
Type | Исследовательские инструменты | |
Date | 2022-02-07 |
- A generalized structural–kinetic theory of the fracture of polymer fibers under purely thermal action on cracked specimens is presented.
- The developed theory combines three independent approaches: structural–kinetic (thermofluctuation theory), mechanical, and thermodynamic.
- The obtained theoretical relations are of practical interest for the development of methods for localization, intensification, and control of the crack growth kinetics.
Review
For citations:
Kartashov E.M. Thermal destruction of polymeric fibers in the theory of temporary dependence of strength. Fine Chemical Technologies. 2021;16(6):526-540. https://doi.org/10.32362/2410-6593-2021-16-6-526-540
ISSN 2686-7575 (Online)