Preview

Fine Chemical Technologies

Advanced search

Shifts in the pKa value of acid–base indicators caused by immobilization on solid substrates via water-soluble polycationic polymers: a case study of Congo Red

https://doi.org/10.32362/2410-6593-2020-15-4-59-70

Full Text:

Abstract

Objectives. Herein, the effects of cationic polyelectrolytes on the properties of solid substrate immobilized acid–base indicators are investigated to predict shifts in their spectral patterns and characteristics.

Methods. The properties of the silica gel immobilized indicator dye in a solution of the cationic polyelectrolyte were studied using automatic photometric titration in the visible region and spectrophotometry using a specialized computerized setup.

Results. The measured pKa value of the immobilized dye, which had shifted by three units to the acidic region, was very similar to the pKa value observed for the indicator in the modifying polymer solution. The observed change in pKa of the immobilized dye and the influence of the solution’s ionic strength were attributed to the local electric potential of the polymer globule. In contrast to the processes associated with covalent immobilization, the effect exerted by the solution’s ionic strength on the indicator reaction diminishes, which, in turn, affects the measured values obtained.

Conclusions. The creation of a sensor for continuous visualization of pH levels based on Congo Red immobilized on silica gel was described. Here, a color transition was noted between pH 1 and 4. These materials can be used to monitor metal extraction processes from industrial effluents or to optimize the extraction of valuable actinides. The approach demonstrated in this work can be applied to immobilize other indicators for pH level monitoring purposes or the production of sensors for other analytes.

About the Authors

A. O. Naumova
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Alina O. Naumova, Postgraduate Student. Scopus Author ID 57191089401

86, Vernadskogo pr., Moscow, 119571



P. V. Melnikov
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Pavel V. Melnikov, Cand. of Sci. (Physics and Mathematics), Assistant Professor. Scopus Author ID 18042368100, ResearcherID D-9773-2014

86, Vernadskogo pr., Moscow, 119571



E. V. Dolganova
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Elena V. Dolganova, Engineer

86, Vernadskogo pr., Moscow, 119571



N. A. Yashtulov
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Nikolai A. Yashtulov, Dr. of Sci. (Chemistry), Professor. Scopus Author ID 6507694451

86, Vernadskogo pr., Moscow, 119571



N. K. Zaitsev
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Nikolai K. Zaitsev, Dr. of Sci. (Chemistry), Professor. Scopus Author ID 5719348592

86, Vernadskogo pr., Moscow, 119571



References

1. Bates R. Opredelenie pH. Teoriya i praktika (Determination of pH. Theory and Practice). Leningrad: Khimiya; 1972. 400 p. (in Russ.).

2. Ostrovskaya V.M., Zaporozhets O.A., Budnikov G.K., Chernavskaya N.M. Voda. Indikatornye sistemy (Water. Indicator systems). Мoscow: VINITI RAN, EKONIKS; 2002. 265 p. (in Russ.).

3. Zolotov Yu.A., Ivanov V.M., Amelin V.G. Khimicheskie test-metody analiza (Chemical test methods of analysis). Мoscow: URSS; 2002. 304 p. (in Russ.). ISBN 5-354-00144-7

4. Zolotov Yu.A. Chemical analysis without laboratories: test methods. Vestnik RAN = Herald of the Russian Academy of Sciences. 1997; 67(6):508-513. (in Russ.).

5. Amelin V.G. Chemical Test Methods for Determining Components of Liquids. J. Anal. Chem. 2000;55(9):808-836. https://doi.org/10.1007/BF02757845

6. Morozko S.A., Ivanov V.M. Test methods in analytical chemistry. Immobilized 1-(2-pyridylazo)-2-naphthol as an analytical reagent. Zhurnal analiticheskoi khimii = J. Anal. Chem. 1995;50(6):629-636 (in Russ.).

7. Amelin V.G. Artificial and natural fibers fabrics with immobilized di- and triaminotriarylmethane reagents in chemical test methods. J. Anal. Chem. 2008;63(3):297-299. https://doi.org/10.1134/S1061934808030192

8. Benjaminsen R.V., Sun H., Henriksen J.R., Christensen N.M., Almdal K., Andresen T.L. Evaluating Nanoparticle Sensor Design for Intracellular pH Measurements. ACS Nano. 2011;5(7):5864-5873. https://doi.org/10.1021/nn201643f

9. Noire M.H., Bouzon C., Couston L., Gontier J., Marty P., Pouyata D. Optical sensing of high acidity using a sol–gel entrapped indicator. Sensors and Actuat. B-Chem. 1998;51(1-3):214-219. https://doi.org/10.1016/S0925-4005(98)00193-2

10. Santos A.L., Johnson D.B. Design and Application of a Low pH Upflow Biofilm Sulfidogenic Bioreactor for Recovering Transition Metals From Synthetic Waste Water at a Brazilian Copper Mine. Front. Microbiol. 2018;9:Article 2051. https://doi.org/10.3389/fmicb.2018.02051

11. Nordstrom D.K., Alpers C.N. Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. PNAS. 1999;96(7):3455-3462. https://doi.org/10.1073/pnas.96.7.3455

12. El-Ashgar N.M., El-Basioni A.I., El-Nahhal I.M., Zourob S.M., El-Agez T.M., Sofyan A. Taya S.A. Sol-Gel Thin Films Immobilized with Bromocresol Purple pHSensitive Indicator in Presence of Surfactants. ISRN Anal. Chem. 2012;2012(Article ID 604389):11 р. https://doi.org/10.5402/2012/604389

13. Bacci M., Baldini F., Bracci S. Spectroscopic Behavior of Acid-Base Indicators after Immobilizationon Glass Supports. J. Appl. Spectros. 1991;45(9):1508-1515. https://doi.org/10.1366%2F000370291433547212.

14. Potyrailo R.A., Hieftje G.M. Use of the original silicone cladding of an optical fiber as a reagent-immobilization medium for intrinsic chemical sensors. Fresen. J. Anal. Chem. 1999;364(1-2):32-40. https://doi.org/10.1007/s002160051297

15. Kashyout A.-H., Soliman H., Nabil M., Bishara A. Impact of Congo red dye in nano-porous silicon as pH-sensor. Sensors Actuat. B-Chem. 2015;216:279-285. https://doi.org/10.1016/j.snb.2015.03.099

16. Yan R., Zhang Y., Wang X., Xu J., Wang D., Zhang W. Synthesis of porous poly(styrene-co-acrylic acid) microspheres through one-step soap-free emulsion polymerization: whys and wherefores. J. Colloid Interface Sci. 2012;368(1):220-225. https://doi.org/10.1016/j.jcis.2011.11.016

17. Rusanova T.Yu., Levina N.A., Shtykov S.N. Solgel materials with immobilized triphenylmethane dyes as sensitive layers of pH optical sensors. Izvestiya Saratovskogo universiteta. Ser. Khimiya. Biologiya. Ekologiya. = Izvestiya of Saratov University. Series Chemistry. Biology. Ecology. 2009;9(1):7-12. (in Russ.)

18. Safronov V.V., Strelov V.I., Krivonogova N.V., Velikotskaya I.G., Khvostova A.A., Bocharova M.V. Solgel films with immobilized acid-base indicators. J. Surf. Invest. X-ray, Synchrotron and Neutron Tech. 2012;6(6): 985-989. https://doi.org/10.1134/S1027451012120105

19. Roik N.V., Belyakova L.A., Dziazko M.O. Optically transparent silica film with pH-sensing properties: Influence of chemical immobilization and presence of β-cyclodextrin on protolytic properties of alizarin yellow. Sensors Actuat. B-Chem. 2018;273:1103-1112. https://doi.org/10.1016/j.snb.2018.07.033

20. Melnikov P.V., Naumova A.O., Alexandrovskaya A.Yu., Zaitsev N.K. Optimizing Production Conditions for a Composite Optical Oxygen Sensor Using Mesoporous SiO2 . Nanotechnol. Russia. 2018;13(11-12):602-608. https://doi.org/10.1134/S1995078018060083

21. Barkauskas J., Stankeviciene I., Daksevic J., Padarauskas A. Interaction between graphite oxide and Congo red in aqueous media. Carbon. 2011;49(15):5373-5381. https://doi.org/10.1016/j.carbon.2011.08.004

22. Reijenga J., van Hoof A., van Loon A., Teunissen B. Development of Methods for the Determination of pKa Values. Anal. Chem. Insights. 2013;8:53-71. https://doi.org/10.4137%2FACI.S12304

23. Yermiyahu Z., Lapides I., Yariv S. Thermo-visibleabsorption spectroscopy study of the protonated Congo-red montmorillonite complex. Appl. Clay Sci. 2007; 37(1-2):1-11. https://doi.org/10.1016/j.clay.2006.10.006

24. Staudinger C., Strobl M., Breininger J., Klimant I., Borisov S.M. Fast and stable optical pH sensor materials for oceanographic applications. Sensors Actuat. B-Chem. 2019;282:204-217. https://doi.org/10.1016/j.snb.2018.11.048

25. Cai Q.Y., Grimes C.A. A salt-independent pH sensor. Sensors Actuat. B-Chem. 2001;79(2-3):144-149. https://doi.org/10.1016/S0925-4005(01)00860-7

26. Hunger K., Mischke P., Rieper W., Raue R., Kunde K., Engel A. Azo Dyes. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA; 2000. 93 p. https://doi.org/10.1002/14356007.a03_245

27. Khan M.I., Akhtar S., Zafar S., Shaheen A., Khan M.A., Luque R., Rehman A.U. Removal of Congo Red from Aqueous Solution by Anion Exchange Membrane (EBTAC): Adsorption Kinetics and Thermodynamics. Materials. 2015;8(7):4147-4161. https://doi.org/10.3390/ma8074147

28. Savvin S.B., Kuznetzov V.V., Sheremet’ev S.V., Mikhailova A.V. Optical Chemical Sensors (Micro- and Nanosystems) for Analysis of Liquids. Russ. J. Gen. Chem. 2008;78(12):2418-2429. https://doi.org/10.1134/S1070363208120244


Supplementary files

1. Titration curve of Congo Red immobilized on silica gel.
Subject
Type Исследовательские инструменты
View (109KB)    
Indexing metadata
2. This is to certify that the paper titled Shifts in the pKa value of acid–base indicators caused by immobilization on solid substrates via water-soluble polycationic polymers: a case study of Congo Red commissioned to us by Alina O. Naumova, Pavel V. Melnikov, Elena V. Dolganova, Nikolai A. Yashtulov, Nikolai K. Zaitsev has been edited for English language and spelling by Enago, an editing brand of Crimson Interactive Inc.
Subject CERTIFICATE OF EDITING
Type Other
View (271KB)    
Indexing metadata
  • The creation of a silica gel immobilized Congo Red sensor for continuous visualization of pH changes with a color transition between pH 1 and 4 is demonstrated.
  • The рKа value of the immobilized dye shifted by three units to the acidic region and was similar to the рKа value for the indicator in the aqueous solution containing the bound cationic polyelectrolyte.
  • The demonstrated approach can be applied to immobilize other indicators for pH level monitoring purposes or the production of sensors for other analytes. 

For citation:


Naumova A.O., Melnikov P.V., Dolganova E.V., Yashtulov N.A., Zaitsev N.K. Shifts in the pKa value of acid–base indicators caused by immobilization on solid substrates via water-soluble polycationic polymers: a case study of Congo Red. Fine Chemical Technologies. 2020;15(4):59-70. https://doi.org/10.32362/2410-6593-2020-15-4-59-70

Views: 129


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)