Preview

Fine Chemical Technologies

Advanced search

INFLUENCE OF POLYMYXIN B ON THE FORMATION OF BIOFILMS BY BACTERIUM Methylophilus quaylei ON POLYPROPYLENE AND TEFLON

https://doi.org/10.32362/2410-6593-2018-13-2-31-39

Full Text:

Abstract

Here we examined the influence of polymyxin B, a lipopeptide antibiotic, on planktonic growth and biofilm of streptomycin-sensitive and streptomycin-resistant isogenic strains of bacteria Methylophilus quaylei on polypropylene and Teflon. Biofilm formation was quantified using crystal violet staining, determined by colony-forming unit and examined by light microscopy. It was found that of bacterial surface hydrophobicity affects the biofilm formation: biofilm formation of Methylophilus quaylei MT strain was better on such hydrophobic materials as Teflon and polypropylene. The minimum inhibitory concentration of polymyxin B for the used strains in planktonic and biofilm form was 1 μg/ml. The sublethal Polymyxin B in the concentration of 0.01 μg/ml stimulates biofilm formation and exhibits antibiofilm properties at the concentration of 0.10 μg/ml. Synergistic effect of polymyxin B and streptomycin on streptomycin-resistant strain M. quaylei SM was found.

About the Authors

A. M. Mohamed
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Postgraduate Student of the Chair of Biotechnology and Industrial Pharmacy

86, Vernadskogo Pr., Moscow, 119571, Russia



D. N. Amzaeva
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Student of the Chair of Biotechnology and Industrial Pharmacy

86, Vernadskogo Pr., Moscow, 119571, Russia



A. B. Pshenichnikova
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Docent, Ph.D. (Chemistry), Associate Professor of the Chair of Biotechnology and Industrial Pharmacy

86, Vernadskogo Pr., Moscow, 119571, Russia



V. I. Shvets
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Academician of the Russian Academy of Sciences, D.Sc. (Chemistry), Professor of the Chair of Biotechnology and Industrial Pharmacy

86, Vernadskogo Pr., Moscow, 119571, Russia



References

1. Costerton J.W. Overview of microbial biofilms // J. Ind. Microbiol. 1995. V. 15. P. 137–140.

2. Flemming H.C., Wingender J., Szewzyk U., Steinberg P., Rice S.A., Kjelleberg S. Biofilms: An emergent form of bacterial life // Nat. Rev. Microbiol. 2016. V. 14. № 9. P. 563–575.

3. Flemming H.C., Wingender J. The biofilm matrix // Nat. Rev. Microbiol. 2010. V. 8. Р. 623–633.

4. Zhurina M.V., Gannesen A.V., Zdorovenko E.L., Plakunov V.K. Composition and functions of the extracellular polymer matrix of bacterial biofilms // Microbiology. 2014. V. 83. № 6. P. 713–722.

5. Jiao Y., Cody G.D., Harding A.K., Wilmes P., Schrenk M., Wheeler K.E., Banfield J.F., Thelen M.P. Characterization of extracellular polymeric substances from acidophilic microbial biofilms // Appl. Environ. Microbiol. 2010. V. 76. № 9. P. 2916–2922.

6. Stewart P.S., Costerton J.W. Antibiotic resistance of bacteria in biofilms // Lancet. 2001. V. 358. P. 135–138.

7. Plakunov V.K., Martyanov S.V., Teteneva N.A., Zhurina M.V. Management of the formation of microbial biofilms: Anti- and probiofilm agents // Mikrobiologiya (Microbiology). 2017. V. 86. № 4. P. 402–420. (in Russ.).

8. Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial biofilms: A common cause of persistent infections // Science. 1999. V. 284. Issue 5418. P. 1318–1322.

9. Rabin N., Zheng Y., Opoku-Temeng C., Du Y., Bonsu E., Sintim H.O. Agents that inhibit bacterial biofilm formation // Future Med. Chem. 2015. V. 7. № 5. P. 647–671.

10. Petrova O.E., Sauer K. Escaping the biofilm in more than one way: Desorption, detachment or dispersion // Curr. Opin. Microbiol. 2016. V. 30. Р. 67–78.

11. Estrela A.B., Abraham W.R. Combining biofilmcompounds and controlling antibiotics as a promising new way to control biofilm infections // Pharmaceuticals. 2010. V. 3. Р. 1374–1393.

12. Koo H., Allan R.N., Howlin R.P., Stoodley P., Stoodley L.H. Targeting microbial biofilms: Current and prospective therapeutic strategies // Nature Rev. Microbiol. 2017. V. 15. № 12. P. 740–755.

13. Strelkova E.A., Zhurina M.V., Plakunov V.K., Belyaev S.S. Stimulation of bacterial biofilms formation with antibiotics // Mikrobiologiya (Microbiology). 2012. V. 81. № 2. P. 282–285. (in Russ.).

14. Wu S., Li X., Gunawardana M., Maguire K., Guerrero-Given D., Schaudinn C., Wang C., Baum M.M., Webster P. Beta-lactam antibiotics stimulate biofilm formation in non-typeable haemophilus influenzae by up-regulating carbohydrate metabolism // PLoS ONE.

15. V. 9. Iss. 7. e99204.

16. Kaplan J.B. Antibiotic-induced biofilm formation // Int. J. Artif. Organs. 2011. V. 34. № 9. P.737–751.

17. Velkov T., Thompson P. E., Nation R. L., Li J. Structure-activity relationships of polymyxin antibiotics // J. Med. Chem. 2010. V. 53. № 5. P. 1898–1916.

18. Rabanal F., Cajal Y. Recent advances and perspectives in the design and development of polymyxins // Nat. Prod. Rep. 2017. V. 6. № 7. P. 886–908.

19. Velkov T., Roberts K.D., Nation R.L., Thompson P.E., Li J. Pharmacology of polymyxins: New insights into an ‘old’ class of antibiotics // Future Microbiol. 2013. V. 8. № 6. Р. 711–724.

20. Kaye K.S., Pogue J.M., Tran T.B., Nation R.L., Li J. Agents of last resort: Polymyxin resistance // Infect. Dis. Clin. North. Am. 2016. V. 30. № 2. P. 391–414.

21. Srinivas P., Rivard K. Polymyxin resistance in Gram-negative pathogens // Curr. Infect. Dis. Rep. 2017. V. 19. № 11. P. 38.

22. Jeannot K., Bolard A., Plésiat P. Resistance to polymyxins in Gram-negative organisms // Int. J. Antimicrob. Agents. 2017. V. 49. № 5. P. 526–535.

23. Brown P., Dawson M.J. Development of new polymyxin derivatives for multi-drug resistant Gramnegative infections // J. Antibiot. (Tokyo). 2017. V. 70. № 4. P. 386–394.

24. Pye C.C., Yu A.A., Weese J.S. Evaluation of biofilm production by Pseudomonas aeruginosa from canine ears and the impact of on antimicrobial susceptibility in vitro // Vet. Dermatol. 2013. V. 24. № 4. P. 446–449. e98-9.

25. Doronina N., Ivanova E., Trotsenko Y., Pshenichnikova A., Kalinina E., Shvets V. Methylophilus quaylei sp. nov., a new aerobic obligately methylotrophic bacterium // System. Appl. Microbiol. 2005. V. 28. P. 303–309.

26. Pshenichnikova A.B., Gavrilova E.S., Shvets V.I. Influence of physico-chemical properties of the gram-negative bacteria cell surface on the resistance to streptomycin // Vestnik MITHT (Fine Chemical Technlolgies). 2011. V. 6. № 2. P. 43–50. (in Russ.).

27. Otman S.A.M., Pshenichnikova A.B., Shvets V.I. Influence of exogenous fatty acids on the growth and production of the exopolysaccharide of the obligate methylotrophic bacterium Methylophilus quaylei // Prikladnaya biokhimiya i mikrobiologiya (Russian Journal of Applied Biochemistry and Microbiology). 2012. V. 48. № 2. P. 226–231. (in Russ.).

28. OFS.1.7.2.0008.15. Determination of the concentration of microbial cells. State Pharmacopoeia of the Russian Federation. XIII edition. V. II. Moscow, 2015.

29. Rosenberg M., Gutniek D., Rosenberg E. Adherence of bacteria to hydrocarbons: a simple method for measuring cell surface hydrophobicity // FEMS Microbiol. Lett. 1980. V. 9. P. 29–33.

30. Anesti V., McDonald I.R., Ramaswamy M., Wade W.G., Kelly D.P., Wood A.P. Isolation and molecular detection of methylotrophic bacteria occurring in the human mouth // Environmen. Microbiol. 2005. V. 7. № 8. P. 1227–1238.

31. Gogleva A.A., Kaparullina E.N., Doronina N.V., Trotsenko Y.A. Methylophilus flavus sp. nov., and Methylophilus luteus sp. nov., aerobic, methylotrophic bacteria associated with plants // Int. J. Syst. Evol. Microbiol. 2010. V. 60. P. 2623–2628.

32. Cerca N., Pier G. B., Vilanova M., Oliveira R., Azeredo J. Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis // Res. Microbiology. 2005. V. 156. № 4. P. 506–514.

33. Oliveira R., Azeredo J., Fonseca A.P. The role of hydrophobicity in bacterial adhesion // Hydrophobicity and Adhesion. 2001. P. 11–22.

34. Maitz M.F. Applications of synthetic polymers in clinical medicine // Biosurface and Biotribology. 2015. V. 1. Р. 161–176.

35. Lenhard J.R., Nation R.L., Tsuji B.T. Synergistic combinations of polymyxins // Int. J. Antimicrob. Agents. 2016. V. 48. № 6. Р. 607–613.


For citation:


Mohamed A.M., Amzaeva D.N., Pshenichnikova A.B., Shvets V.I. INFLUENCE OF POLYMYXIN B ON THE FORMATION OF BIOFILMS BY BACTERIUM Methylophilus quaylei ON POLYPROPYLENE AND TEFLON. Fine Chemical Technologies. 2018;13(2):31-39. (In Russ.) https://doi.org/10.32362/2410-6593-2018-13-2-31-39

Views: 130


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)