Preview

Fine Chemical Technologies

Advanced search

SYNTHESIS AND PROPERTIES COMPARISON OF MESO-ARYLPORPHYRINS METAL COMPLEXES AS POTENTIAL DYES FOR SOLAR CELLS

https://doi.org/10.32362/2410-6593-2018-13-2-21-30

Full Text:

Abstract

This work is dedicated to the synthesis of porphyrin metal complexes for creation of dyesensitized solar cells (DSSC). Three different dyes were synthesized - zinc complexes of porphyrins containing alkoxyl substituents: with symmetric structure (Zn-P1), as well as asymmetric (type A3B) with the introduction of a donor (Zn-P2) or an acceptor (Zn-P3) substituents via the 1,3,5-triazine fragment. The spectral characteristics of the synthesized substances are compared. For all the obtained dyes, geometry optimization and visualization of the electron density distribution were carried out using computational methods based on the density functional theory (DFT). The location of the frontier unbound molecular orbitals is more optimal when an acceptor substituent containing anchor groups is introduced via the triazine moiety. However, the use of ligands containing an anchor group simplifies the synthesis of the dye and opens up more possibilities for varying both the ligand and the introduced donor substituents. As a result, it was concluded that the spatial distribution of the dye, when applied to the electrode and, consequently, the number of its molecules per unit area of the semiconductor, can have the greatest effect on the efficiency of a cell using t he described compounds.

About the Authors

A. V. Ezhov
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Postgraduate Student, N.A. Preobrazhenkiy Chair of Chemistry and Technology of Biologically Active Compounds, Medical and Organic Chemistry,

86, Vernadskogo Pr., Moscow 119571, Russia



F. Yu. Vyalba
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Student, N.A. Preobrazhenkiy Chair of Chemistry and Technology of Biologically Active Compounds, Medical and Organic Chemistry

86, Vernadskogo Pr., Moscow 119571, Russia



K. A. Zhdanova
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Ph.D. (Chemistry), Assistant Professor, N.A. Preobrazhenkiy Chair of Chemistry and Technology of Biologically Active Compounds, Medical and Organic Chemistry,

-86, Vernadskogo Pr., Moscow 119571, Russia



A. F. Mironov
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

D.Sc. (Chemistry), Professor, N.A. Preobrazhenkiy Chair of Chemistry and Technology of Biologically Active Compounds, Medical and Organic Chemistry

86, Vernadskogo Pr., Moscow 119571, Russia



K. Yu. Zhizhin
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies); N.S. Kurnakov Institute of General and Inorganic Chemistry
Russian Federation

D.Sc. (Chemistry), Corresponding Member of the Russian Academy of Sciences, Deputy Director of N.S. Kurnakov

31, Leninsky Pr., Moscow 119991, Russia

Professor, A.N. Reformatskiy Chair of Inorganic Chemistry

86, Vernadskogo Pr., Moscow 119571, Russia



N. A. Bragina
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Ph.D. (Chemistry), Associate Professor, N.A. Preobrazhenkiy Chair of Chemistry and Technology of Biologically Active Compounds, Medical and Organic Chemistry

86, Vernadskogo Pr., Moscow 119571, Russia



References

1. Bagher A.M., Vahid M.M.A., Mohsen M. Types of solar cells and application // Am. J. Optics and Photonics. 2015. V. 3. № 5. P. 94–113.

2. O’Regan B., Grätzel M. A low-cost, highefficiency solar cell based on dye-sensitized colloidal TiO2 films // Nature. 1991. V. 353. P. 737–740.

3. Ezhov A.V., Zhdanova K.A., Bragina N.A., Mironov A.F. Approaches to improve efficiency of dyesensitized solar cells // Macroheterocycles. 2016. V. 9. № 4. P. 337–352.

4. Hagfeldt A., Boschloo G., Sun L., Kloo L., Pettersson H. Dye-sensitized solar cells // Chem. Rev. 2010. V. 110. P. 6595–6663.

5. Yella A., Mai C.-L., Zakeeruddin S.M., Chang S.-N., Hsieh C.-H., Yeh C.-Yu, Grätzel M. Molecular engineering of push–pull porphyrin dyes for highly efficient dyesensitized solar cells: the role of benzene spacers // Angew. Chem. Int. Ed. 2014. V. 53. P. 2973–2977.

6. Mathew S., Yella A., Gao P., Humphry-Baker R., Curchod B.F.E., Ashari-Astani N., Tavernelli I., Rothlisberger U., Nazeeruddin Md.Kh., Grätzel M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers // Nature Chemistry. 2014. V. 6. P. 242–247.

7. Lu F., Zhang J., Zhou Y., Zhao Y., Zhang B., Feng Y. Novel D-π-A porphyrin dyes with different alkoxy chains for use in dye-sensitized solar cells // Dyes and Pigments. 2016. V. 125. P. 116–123.

8. Blotny G. Recent applications of 2,4,6-trichloro1,3,5-triazine and its derivatives in organic synthesis // Tetrahedron. 2006. V. 62. P. 9507–9522.

9. Zhang J.-X., Han F.-M., Liu J.-C., Li R.-Z., Jin N.- Z. Self-assemblies formed by isonicotinic acid analogues axially coordinating with zinc porphyrin via pyridyl unit: Synthesis and application in dye sensitized solar cells // Tetrahedron Lett. 2016. V. 57. № 17. P. 1867–1872.

10. Zervaki G.E., Papastamatakis E., Angaridis P.A., Nikolaou V., Singh M., Kurchania R., Kitsopoulos T.N., Sharma G.D., Coutsolelos A.G. A propeller-shaped, triazine-linked porphyrin triad as efficient sensitizer for dye-sensitized solar cells // Eur. J. Inorg. Chem. 2014. V. 2014. P. 1020–1033.

11. Coutsolelos A.G., Zervaki G., Tsaka V., Vatikioti A., Nikolaou V., Sharma G.D., Georgakaki I. Triazine di(carboxy)porphyrin dyad versus a triazine di(carboxy) porphyrin triad for sensitizers in DSSCs // Dalton Trans. 2015. V. 44. № 30. P. 13550–13564.

12. Kuhri S., Charalambidis G., Angaridis P.A., Lazarides T., Pagona G., Tagmatarchis N., Coutsolelos A.G., Guldi D.M. New approach for the photosynthetic antenna–reaction center complex with a model organized around an s-triazine linker // Chem. Eur. J. 2014. V. 20. P. 2049–2057.

13. Cao J., Liu J.-C., Chen L.-W., Li R.-Z., Jin N.- Z. Two new self-assemblies of two zinc porphyrin with isonicotinic acid by metal–ligand axial coordination and their applications in supramolecular solar cell // Tetrahedron Lett. 2013. V. 54. № 29. P. 3851–3854.

14. KC C.B., Stranius K., D’Souza P., Subbaiyan N.K., Lemmetyinen H., Tkachenko N.V., D’Souza F. Sequential photoinduced energy and electron transfer directed improved performance of the supramolecular solar cell of a zinc porphyrin−zinc phthalocyanine conjugate modified TiO2 surface // J. Phys. Chem. C. 2013. V. 117. № 2. P. 763–773.

15. Fedulova I.N., Bragina N.A., Novikov N.V., Ugol’nikova O.A., Mironov A.F. Synthesis of lipophilic tetraphenylporphyrins for the lipid-porphyrin ensembles creation // Bioorganicheskaya khimiya (Bioorganic Сhemistry). 2007. V. 33. № 6. P. 635–639 (in Russ.).

16. Zhdanova K.A., Zhdanov A.P., Ezhov A.V., Bragina N.A., Zhizhin K.Yu., Ushakova I.P., Mironov A.F., Kuznetsov N.T. Synthesis of amino-containing meso-aryl-substituted porphyrins and their conjugates with clozo-decaborate anion // Izvestiya Akademii nauk. Seriya khimicheskaya (Russ. Chem. Bull.) 2014. № 1. P. 194–200 (in Russ.).

17. Shmilovits M., Vinodu M., Goldberg I. Coordination polymers of tetra(4-carboxyphenyl)-porphyrins sustained by tetrahedral zinc ion linkers // Crystal Growth & Design. 2004. V. 4. № 3. P. 633–638.

18. Granovsky A.A. Firefly version 8, www.http://classic.chem.msu.su/gran/firefly/index.html

19. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S., Windus T.L., Dupuis M., Montgomery J.A. General atomic and molecular electronic structure system // J. Comput. Chem. 1993. V. 14. № 11. P. 1347–1363.

20. Bode B.M., Gordon M.S. Macmolplt: a graphical user interface for GAMESS // J. Mol. Graphics and Modeling. 1999. V. 16. № 3. P. 133–138.

21. Becke A.D. Density-functional exchange-energy approximation with correct asymptotic behavior // Phys. Rev. A. Gen. Phys. 1988. V. 38. № 6. P. 3098–3100.

22. Lee C., Yang W., Parr R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density // Phys. Rev. B. Condens. Matter. 1988. V. 37. № 2. 785–789.

23. Subbaiyan N.K., Wijesinghe C.A., D’Souza F. Supramolecular solar cells: surface modification of nanocrytalline TiO2 with coordinating ligands to immobilize sensitizers and dyads via metal-ligand coordination for enhanced photocurrent generation // J. Am. Chem. Soc. 2009. V. 131. P. 14646–14647.


For citation:


Ezhov A.V., Vyalba F.Yu., Zhdanova K.A., Mironov A.F., Zhizhin K.Yu., Bragina N.A. SYNTHESIS AND PROPERTIES COMPARISON OF MESO-ARYLPORPHYRINS METAL COMPLEXES AS POTENTIAL DYES FOR SOLAR CELLS. Fine Chemical Technologies. 2018;13(2):21-30. (In Russ.) https://doi.org/10.32362/2410-6593-2018-13-2-21-30

Views: 152


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)