Preview

Fine Chemical Technologies

Advanced search

COMPOUNDS OF BISMUTH AND ITS PORPHYRINE COMPLEXES: APPLICATION, STRUCTURE AND PROPERTIES

https://doi.org/10.32362/2410-6593-2018-13-2-5-20

Full Text:

Abstract

Bismuth and its compounds have been known since ancient times and now are widely used in practice in various fields. Bismuth use in medicine can be traced back to the Middle Ages, and its wide application is due to its very low toxicity - for most bismuth compounds it is less than for sodium chloride. Bismuth and its compounds, in particular salts, are used in medical practice in the treatment of diseases such as spirochetosis, gastric and duodenal ulcer, leishmaniasis and coronaviral infection, as well as in cancer therapy. In addition to solid preparations liquid peroral pharmaceutical forms have been developed for the treatment of diarrhea, colitis, ulcers etc. Bismuth preparations are used in stomatology for the treatment of inflammatory diseases of paradontium. The review considers the syntheses and properties of bismuth complexes with natural and synthetic porphyrins, which are used in medicine and other fields of science and technology. Considerable attention is paid to the structure features of bismuth porphyrins complexes, their dimeric structures, and the influence of various extra ligands. The counterion nature and structure make a substantial contribution in solving the problem of complexes stability. The central bismuth atom in these complexes extends far above the plane of the macrocycle due to the large ionic radius. Thus, the counterions action on the conformation, physicochemical properties and stability of metal porphyrins complexes is shown. A separate section is devoted to unique and interesting properties of bismuth porphyrins complexes, such as fluorescence and color variation of crystals.

About the Authors

A. S. Gorshkova
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Postgraduate Student of the N.A. Preobrazhenskiy Chair of Chemistry and Technology of Biologically Active Substances, Medical and Organic Chemistry,

86, Vernadskogo Pr., Moscow 119571, Russia



V. D. Rumyantseva
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies); Kotel’nikov Institute of Radioengineering and Electronics RAS
Russian Federation

Ph.D. (Chemistry), Senior Researcher of the N.A. Preobrazhenskiy Chair of Chemistry and Technology of Biologically Active Substances, Medical and Organic Chemistry,

86, Vernadskogo Pr., Moscow 119571, Russia

Senior Researcher of V.A.

1, Akademika Vvedenskogo Sq., Moscow region, Fryazino 141190, Russia



A. F. Mironov
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Dr.Sc. (Chemistry), Professor of the N.A. Preobrazhenskiy Chair of Chemistry and Technology of Biologically Active Substances, Medical and Organic Chemistry

86, Vernadskogo Pr., Moscow 119571, Russia



References

1. Biological Chemistry of Arsenic, Antimony and Bismuth. Ed. H. Sun. John Wiley & Sons. 2011. 410 p.

2. Yukhin Yu.M., Mikhailov Yu.I. Chemistry of bismuth compounds and materials. Novosibirsk: SB RAS, 2001. 359 p. (in Russ.).

3. A review of USSR mineral resources. Comp. Yu.L. Den’gin. Vismut. Iss. II. Leningrad. Izdanie geologicheskogo komiteta, 1927. 32 p. (in Russ.).

4. Yang Y., Ouyang R., Xu L., Guo N., Li W., Feng K., Ouyang L., Yang Z., Zhou S., Miao Y. Review: Bismuth complexes: Synthesis and applications in biomedicine // J. Coord. Chem. 2015. V. 68. № 3. P. 379–397.

5. Evseenko V.I. Processes of bismuth obtaining: tartrate-acid and gallic-acid basic high-purity from nitrate solutions: Ph.D. (Chem.) dissertation. Krasnoyarsk: Inst. of Chem. and Chem. Technol. Siberian Branch RAN, 2008. 117 p. (in Russ.).

6. Fisenkov N.N. Development of the wound healing antiseptic powder formulation and its comparative pharmaco-toxicological evaluation: Ph.D. (Vet.) dissertation. St. Petersburg, 2002. 129 p. (in Russ.).

7. Eliseev A.G. [et al.] Great Medical Encyclopedia. Undated and supplemented bestseller edition. Moscow: Eksmo Publ., 2014. 1320 p. (in Russ.).

8. Kudryavtseva L.V., Sherbakov P.L., Ivanikov I.O., Govorun V.M. Helicobacter pylory-infection: Modern aspects of diagnosis and therapy. A manual for doctors. Research Institute of Physico-Chemical Medicine of the Ministry of Health of the Russian Federation, Scientificproduction firm «Litekh», National Medical Research Center of Children's Health of the Ministry of Health of the Russian Federation, TsKB Office of the President of the Russian Federation. Moscow, 2004. 41 p. (in Russ.).

9. Sarsenbaeva A.S., Ignatova G.L., Vorotnikova S.V. Methods of Helicobacter pylori infection diagnosing. Educational manual. Chelyabinsk: South Ural State Medical University, 2005. 50 p. (in Russ.).

10. Mégraud F., Roberts P., Williamson R. Ranitidine bismuth citrate can help to overcome Helicobacter pylori resistance to clarithromycin in vivo // Helicobacter. 2000. V. 5. № 4. P. 222–226.

11. Graham D.Y., Hoffman J., Andersson S.-Y., Qureshi W., Osato M.S. El-Zimaity H.M.T. Ranitidine bismuth citrate, tetracycline, clarithromycin twice-a-day triple therapy for clarithromycin susceptible Helicobacter pylori infection // Aliment. Pharmacol. Ther. Blackwell Science Ltd. 1999. № 13. P. 169–172.

12. Orlova E.S., Bragin A.V., Akmalova G.M. A drug for periodontitis and oral mucosa diseases associated with Helicobacter pylori infection, and the way of its used. Patent RF 2549445. № 2014104751/15; filed 02/12/2014; publ. 04/27/2015. (in Russ.).

13. Chemical encyclopedia. Ed. by I.L. Knunyants et al. Moscow: Sovetskaya Entsiklopediya Publ., 1988. V. 1. 623 p. (in Russ.).

14. Halime Z., Balieu S., Lachkar M., Roisnel T., Richard P., Boitrel B. Functionalization of porphyrins: Mechanistic insights, conformational studies and structural characterizations // Eur. J. Org. Chem. 2006. P. 1207–1215.

15. Hassfjell S., Brechbiel M. W. The development of the α-particle emitting radionuclides 212Bi and 213Bi, and their decay chain related radionuclides, for therapeutic applications // Chem. Rev. 2001. V. 101. P. 2019–2036.

16. Couturier O., Supiot S., Degraef-Mougin M., Faivre-Chauvet A., Carlier T., Chatal J.-F., Davodeau F., Cherel M. Cancer radioimmunotherapy with alphaemitting nuclides // Eur. J Nucl. Med. Mol. Imaging. 2005. V. 32. P. 601–614.

17. Halime Z., Michaudet L., Lachkar M., Brossier P., Boitrel B. Influence of pendant arms bearing ligating groups on the structure of bismuth porphyrins: Implications for labeling immunoglobulins used in medical applications // Bioconjug. Chem. 2004. V. 15. № 6. P. 1193–1200.

18. Le Gac S., Boitrel B. Structurally characterized bimetallic porphyrin complexes of Pb, Bi, Hg and Tl based on unusual coordination modes // J. Porphyrins Phthalocyanines. 2016. V. 20. P. 117–133.

19. Infectious and parasitic diseases of developing countries. Ed. by N.V. Chebyshev, S.G. Pak. Moscow: GEOTAR-Media Publ., 2008. 492 p. (in Russ.).

20. Gomes M.L., DeFreitas-Silva G., dos Reis P.G., Melo M.N., Frezard F., Demicheli C., Idemori Y.M. Synthesis and characterization of bismuth(III) and antimony(V) porphyrins: High antileishmanial activity against antimony-resistant parasite // J. Biol. Inorg. Chem. 2015. V. 20. № 5. P. 771–779.

21. Respiratory medicine. In 3 vols. V. 2. Ed. A.G. Chuchalin. Moscow. Litterra Publ., 2017. 544 p. (in Russ.).

22. Yang N., Tanner J.A., Wang Z., Huang J., Zheng B., Zhu N., Sun H. Inhibition of SARS coronavirus helicase by bismuth complexes // Chem. Commun. 2007. P. 4413–4415.

23. Tanner J.A., Zheng B.J., Zhou J., Watt R.M., Jiang J.Q., Wong K.L., Lin Y.P., Lu L.Y., He M.L., Kung H.F., Kesel A.J., Huang J.D. The adamantane-derived bananins are potent inhibitors of the helicase activities and replication of SARS Coronavirus // Chem. Biol. 2005. V. 12. P. 303–311.

24. Bernini A., Spiga O., Venditti V., Prischi F., Bracci L., Huang J.D., Tanner J.A., Niccolai N. Tertiary structure prediction of SARS coronavirus helicase // Biochem. Biophys. Res. Commun. 2006. V. 343. № 4. P.1101–1104.

25. Tanner J.A., Watt R.M., Chai Y.B., Lu L.Y., Lin M.C., Peiris J.S., Poon L.L., Kung H.F., Huang J.D. The severe acute respiratory syndrome (SARS) Coronavirus NTPase/helicase belongs to a distinct class of 5’ to 3’ viral helicases // J. Biol. Chem. 2003. V. 278. P. 39578–39582.

26. Lipengol’ts A.A., Cherepanov A.A., Grigor’eva E.Yu., Kulakov V.N. Antitumor efficiency of bismuth complex with diethylenetriaminepentaacetic acid in binary radiotherapy // Rossiyskiy bioterapevticheskiy zhurnal (Russian Biotherapeutic Journal). 2016. V. 15. № 1. P. 58. (in Russ.).

27. Zhao Q., Wang Y., Xu Y., Yun Yan, Huang J. Out-of-plane coordinated porphyrin nanotubes with enhanced singlet oxygen generation efficiency // Sci. Rep. 2016. V. 6:31339. P. 1–8. DOI: 10.1038/srep31339.

28. Treibs A. Metallkomplexe von Porphyrinen // Lieb. Ann. Chem. 1969. B. 728. S. 115–148.

29. Buchler J.W., Lay K.L. Arsen-, antimon- und wismutkomplexe des octaäthylporphins // Inorg. Nucl. Chem. Lett. 1974. B. 10. S. 297–300.

30. Sayer P., Gouterman M., Connell C. R. Metalloid Porphyrins and Phthalocyanines // Acc. Chem. Res. 1982. V. 15. P. 73–79.

31. Lemon C.M., Brothers P.J., Boitrel B. Porphyrin complexes of the period 6 main group and late transition metals // Dalton Trans. 2011. V. 40. P. 6591–6609.

32. Barbour T., Belcher W.J., Brothers P.J., Rickard C.E.F., Ware D.C. Preparation of group 15 (phosphorus, antimony, and bismuth) complexes of meso-tetra-ptolylporphyrin (TTP) and X-ray crystal structure of [Sb(TTP)(OCH(CH3)2)2]Cl // Inorg. Chem. 1992. V. 31. P. 746–756.

33. Chacko G.P., Hambright P. Acid-, anion-, and base-catalyzed solvolysis reactions of a water soluble bismuth(III) porphyrin // Inorg. Chem. 1994. V. 33. № 24. P. 5595–5597.

34. Michaudet L., Fasseur D., Guilard R., Ou H., Kadish K.M., Dahaoui S., Lecomte C. Synthesis, characterization and electrochemistry of bismuth porphyrins. X-ray crystal structure of (OEP)Bi(SO3CF3) // J. Porphyrins Phthalocyanines. 2000. V. 4. P. 261–270.

35. Boitrel B., Breede M., Brothers P.J., Hodgson M., Michaudet L., Rickard C.E.F., Al Salim N. Bismuth porphyrin complexes: Syntheses and structural studies // Dalton Trans. 2003. P. 1803–1807.

36. Halime Z., Michaudet L., Razavet M., Ruzié C., Boitrel B. Synthesis, characterisation and properties of bismuth(III) ester pendant arm picket porphyrins // Dalton Trans. 2003. P. 4250–4254.

37. Michaudeta L., Halimea Z., Lachkarb M., Boitrel B. Pre-shaped aromatic picket porphyrins bearing neutral oxygen donors and their bismuth complexes: Synthesis and coordination studies // Lett. Org. Chem. 2006. V. 3. № 10. P. 753–758.

38. Hambright P. The coordination chemistry of metalloporphyrins // Coord. Chem. Rev. 1971. V. 6. P. 247–268.

39. The Porphyrin Handbook. Ed. K.M. Kadish, K.M. Smith, R.Guilard. 2000. V. 3. P. 49–112.

40. Michaudet L., Richard P., Boitrel B. Synthesis and crystal structure of an unprecedented bismuth porphyrin containing ester pendant arms // Chem.Commun. 2000. P. 1589–1590.

41. Brennan T.D., Scheidt W.R., Shelnutt J.A. New crystalline phase of (octaethylporphinato)nickel(II): Effects of pi.-pi. interactions on molecular structure and resonance Raman spectra // J. Am. Chem. Soc. 1988. V. 110. P. 3919–3924.

42. Richard P., Rose E., Boitrel B. Characterization and crystal structure of a chiral ruffled basket-handle porphyrin // Inorg. Chem. 1998. V. 37. P. 6532–6534.

43. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides // Acta Crystallogr. 1976. A 32. P. 751–767.

44. Dehghani H., Sardrood A.R.A. Synthesis and spectroscopic characterization of new molecular complexes of bismuth(III) chloride with free base mesotetraarylporphyrins // Bull. Chem. Soc. Japan. 2007. V. 80. № 3. P. 518–522.

45. Mohajer D., Dehghani H. Exclusive 2:1 molecular complexation of 2,3-dichloro-5,6-dicyanobenzoquinone and para-substituted meso-tetraphenylporphyrins: Spectral analogues for deprotonated meso-tetraphenylporphyrin // J. Chem. Soc. Perkin Trans. 2. 2000. P. 199–205.

46. Mohajer D., Dehghani H. Preparation and spectroscopic characterization of 2:1 molecular complexes of tetracyanoethylene and meso-tetraphenylporphyrins // Bull. Chem. Soc. Japan. 2000. V. 73. P. 1477–1484.

47. Mohajer D., Dehghani H. Novel 1:2 molecular complexation of free base meso-tetraphenylporphyrins with σ-acceptor trialkylsilyl chlorides // New J. Chem. 2003. V. 27. P. 242–244.

48. Mohajer D., Zakavi S., Rayati S., Zahedi M., Safari N., Khavasi H. R., Shahbazian S. Unique 1’2 adduct formation of meso-tetraarylporphyrins and mesotetraalkylporphyrins with BF3: A spectroscopic and ab initio study // New J. Chem. 2004. V. 28. P. 1600–1607.

49. Wagner B., Dehnhardt N., Schmid M., Klein B.P., Ruppenthal L., Müller P., Zugermeier M., Gottfried J.M., Lippert S., Halbich M.U., Rahimi-Iman A., Heine J. Color change effect in an organic−inorganic hybrid material based on a porphyrin diacid // J. Phys. Chem. 2016. V. 120. № 49. P. 28363–28373.

50. Senge M.О., Forsyth T.P., Nguyen L.T., Smith K.M. Sterically strained porphyrins-influence of core protonation and peripheral substitution on the conformation of tetra-meso-, octa-ß and dodecasubstituted porphyrin dica tions // Angew. Chem., Int. Ed. Engl. 1995. V. 33. P. 2485–2487.

51. Senge M.O., Kalisch W.W. Structure and conformation of tetra-meso-, octa-ß and dodeca-substituted 22,24-dihydroporphyrins (porphyrin dications) // Z. Naturforsch. B: J. Chem. Sci. 1999. V. 54. P. 943–959.

52. Senge M.O. A сonformational study of 5,10,15,20-tetraalkyl-22H+,24H+-porphyrindiium salts (dication salts) // Z. Naturforsch. B: J. Chem. Sci. 2000. V. 55 P. 336–344.

53. Hrizi C., Chaker C., Chaabouni S. Synthesis, crystal structure, thermal and dielectric properties of bis(p-phenylenediammonium) chloride hexachloro bismuthate(III) monohydrate [C6H4(NH3)2]2ClBiCl6·H2O // Ionics. 2011. V. 17. P. 545–553.

54. Lin R.-G., Xu G., Lu G., Wang M.-S., Li P.-X., Guo G.-C. Photochromic hybrid containing in situ-generated benzyl viologen and novel trinuclear [Bi3Cl14]5-: Improved photoresponsive behavior by the π···π interactions and size effect of inorganic oligomer // Inorg. Chem. 2014. V. 53. P. 4244–4249.

55. Golubev D.V., Rumyantseva V.D., Fomichev V.V. About thermal stability of bismuth(III) iodine etioporhyrin II complex // Tonkie khimicheskie tekhnologii (Fine Chemical Technologies). 2017. V. 12. № 1. P. 26–30. (in Russ.).

56. Wells A.F. Structural Inorganic Chemistry. 4th Edition. Oxford University, 1975. 711 p.

57. Franck W., Reiss G.J., Schneider J. Das Nonaaquabismuth(III) – Kation // Angew. Chem. Int. Ed. Engl. 1995. B. 34. S. 2416–2417.

58. Nikol H., Vogler A. Photoluminescence of antimony(III) and bismuth(III) chloride complexes in solution // J. Am. Chem. Soc. 1991. V. 113. P. 8988–8990.

59. De Luca G., Romeo A., Scolaro L. M. Role of counteranions in acid-induced aggregation of isomeric tetrapyridylporphyrins in organic solvents // J. Phys. Chem. B. 2005. V. 109. P. 7149–7158.

60. Leblanc N., Allai M., Mercier N., Sanguinet L. Stable photoinduced separated charge state in viologen halometallates: Some key parameters // Cryst. Growth Des. 2011. V. 11. P. 2064–2069.

61. Mercier N. The templating effect and photochemistry of viologens in halometalate hybrid crystals // Eur. J. Inorg. Chem. 2013. V. 2013. № 1. P. 19–31.

62. Xu G., Guo G.-C., Wang M.-S., Zhang Z.-J., Chen W.-T., Huang J.-S. Photochromism of a methyl viologen bismuth(III) chloride: Structural variation before and after UV irradiation // Angew. Chem., Int. Ed. 2007. V. 46. P. 3249–3251.


For citation:


Gorshkova A.S., Rumyantseva V.D., Mironov A.F. COMPOUNDS OF BISMUTH AND ITS PORPHYRINE COMPLEXES: APPLICATION, STRUCTURE AND PROPERTIES. Fine Chemical Technologies. 2018;13(2):5-20. (In Russ.) https://doi.org/10.32362/2410-6593-2018-13-2-5-20

Views: 439


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)