Preview

Fine Chemical Technologies

Advanced search

PROSPECTS OF APPLYING HEAT PUMPS UPON CARRYING OUT COMBINED MASS TRANSFER PROCESSES

https://doi.org/10.32362/2410-6593-2018-13-1-55-65

Full Text:

Abstract

The prospects of using heat pumps for the separation of mixtures by combination of different mass transfer processes are considered, which is associated with the supply and removal of thermal energy. The heat released in some stages can be successfully used at other stages of separation. Using heat pumps makes it possible to change the temperature potentials of heat fluxes, which greatly improves the efficiency of regenerative heat transfer. If a vapor phase forms when carrying out mass transfer processes, it can be used as the working fluid of the heat pump of the open type. If mass transfer processes are carried out without the formation of vapor phases, it is necessary to apply heat pumps of the closed type, in the circuit of which a variety of intermediate heat transfer fluids circulate. The article briefly describes the features of mixtures separation by a combination of fractional crystallization by evaporation, dissolution, fractional melting, distillation and rectification with the use of compressor heat pumps of open and closed type. In order to assess the energy efficiency of different variants of combined processes and to compare them with traditional separation it is suggested to use the relative equivalent consumption, which makes it possible to take into account the different cost of thermal and electric energy required for carrying out the considered process of separation. Different variants of organizing the combined separation are compared. It was found that their energy efficiency significantly depends on the composition of the initial mixture, on requirements for the separation products, as well as on the position of the eutectic point on the liquid - solid phase charts. It was shown that the use of heat pumps allows reducing several times energy costs, as well as the consumption of refrigerants for combined separation.

About the Authors

G. A. Nosov
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Dr.Sc. (Engineering), Professor of the N.I. Gel’perin Chair of Processes and Apparatus of Chemical Technologies

86, Vernadskogo Pr., Moscow, 119571, Russia



M. V. Mikhailov
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Post-Graduate Student of the N.I. Gel’perin Chair of Processes and Apparatus of Chemical Technologies

86, Vernadskogo Pr., Moscow, 119571, Russia



References

1. Yantovskii E. I., Levin L.A. Industrial heat pumps. M.: Energoizdat Publ., 1989. 128 p. (in Russ.).

2. Gorshkov V.G. Heat pumps. Analytical overview // Spravochnik promyshlennogo oborudovaniya (Сatalog of Industrial Equipment). 2004. № 2. P. 47–80. (in Russ.).

3. Energy equipment for the use of alternative and renewable energy sources / Ed. by V.I. Vissarionov. Moscow: «VIEN» Publ., 2004. 448 p. (in Russ.).

4. Amerkhanov R.A. Heat pumps. Moscow: Energoatomizdat Publ., 2005. 160 p. (in Russ.).

5. Baranenko A.V., Bukharin N. N., Pekarev V.I., Timofeevskiy S.L. Refrigerating apparatus / Under the general editorship of S.L. Timofeevskiy. SaintPetersburg: politekhnika Publ., 2006. 944 p. (in Russ.).

6. Orekhov I.I., Timofeevsky L.S., Karavan S.K. Absorption heat converters. Leningrad: Khimiya Publ., 1989. 208 p. (in Russ.).

7. Ring T.A., Dirksen J.A. Absorption heat pumps having improved efficiency using a crystallizationinhibiting additive. University of Utah, 2008. 136 р.

8. Winnington T.L., Grin R.J., Lorton R., Uselton R.B. Absorption heat pump and method of his work. Interoteks Limited Publ., 2001. 126 p.

9. Baranenko A.V., Timofeevsky L.S., Popov A.V. Absorption of heat converters. Saint-Petersburg: SPbGUN and PT Publ., 2005. 338 p. (in Russ.).

10. Pivinskii A.A. Evaluation of the efficiency of vapor compression heat pumps and absorption thermotransformers lithium bromide decreasing: diss. … Ph.D. (Eng.) Saint-Petersburg, 2005. 209 p. (in Russ.).

11. Kudra T. Heat-pump drying // Advanced Drying Technologies. 2nd ed. New York, 2008. 500 p.

12. Kultygin Ya.B., Mitresov P.V., Novikov A.G., Pletnev A.V. The use of non-renewable energy sources. Leningrad: TsNII "Rumb", 1989. 114 p. (in Russ.).

13. Gelperin N.I., Nosov G.A. Fundamentals of fractional crystallization techniques. Moscow: Khimiya Publ., 1986. 304 p. (in Russ.).

14. Ainshtein V.G., Zakharov M.K., Nosov G.A., Zakharenko V.V., Zinovkina T.V., Taran A.L., Kostaniyan A.E. [et al.] Processes and devices of chemical technology. M: Terevinf Publ., 2015. 1784 p. (in Russ.).

15. Lyskova M.V., Kuznetsova I.K., Dmitriev E.A. Techno-economic analysis of the evaporation with a heat pump // Uspekhi v himii i himicheskoj tekhnologii (Advances in Chemistry and Chemical Technology). 2006. № 2. P. 77–80. (in Russ.).

16. Zakharov М.К., Nosov G.A., Myasoedov V.N. The use of heat pumps in chemical technology processes // Uchenye zapiski MITHT (Scientific Notes of MITHT).

17. V. 6. P. 54–63. (in Russ.).

18. Lebedev Yu.N., Aleksandrov I.A., Zaitseva T.M. Distillation of a mixture of close components with the use of heat pumps // Khimiya i tekhnologiya topliva i masel (Chemistry and Technology of Fuels and Oils). 2010 № 4. P. 10–13. (in Russ.).

19. Ghazal K., Majid A., Heidari S. H., Reza S. G. Distillation column controllability analysis through heat pump integration // Chem. Eng. & Process. 2015. V. 97. P. 23–37.

20. Yuliang L., Jian Z., Lumin L., Lanyi S., Cheng Z. Heat pump assisted reactive and azeotropic distillations in dividing wall columns // Chem. Eng. & Process. 2015. V. 95. P. 289–301.

21. Van Duc L.N., Moonyong L. A hybrid technology combining heat pump and thermally coupled distillation sequence for retrofit and debottlenecking // Energy. 2015. V. 81. P. 103–110

22. Yus D.C., Le Quang M., Mohd Shariq K., KeeKahb K., Alireza B., Moonyong L. Optimal design of advanced distillation configuration for enhanced energy efficiency of waste solvent recovery process in semiconductor industry // Energy Conversion and Management. 2015. V. 102. P. 92–103.

23. Khomenkov A.S., Ilyin S.I. Energy saving in the processes of rectification with the use of heat pumps // Uspekhi v himii i himicheskoj tekhnologii (Advances in Chemistry and Chemical Technology). 2017. V. 31. № 5 (186). P. 17–19. (in Russ.).

24. Razumovsky G.N., Selivanenko I.L. The use of a compression heat pump for energy recovery in the process of distillation of water under vacuum // Khimicheskaya promyshlennost' segodnya (Chemical Industry Today). 2017 № 2. P. 17–26. (in Russ.).

25. Zhil'tsov V.S. Separation of eutectic mixtures by a combination of single distillation and fractional crystallization processes using heat pumps: diss. … Ph.D. (Eng.). Moscow, 2017. 200 p. (in Russ).

26. Guzev O.Yu., Goncharov S.V. Modeling of the kinetics of multistage drying of biological material in the dryer fluidized bed with a heat pump // Uspekhi v himii i himicheskoj tekhnologii (Advances in Chemistry and Chemical Technology). 2006. № 1. P. 78–82. (in Russ.).

27. Hawlader M.N.A., Perera C.O., Tian M. Properties of modified atmosphere heat pump dried foods // J. Food Eng. 2006. V. 74. № 3. P. 392–401.

28. Zakharov M.K. About the effectiveness of heat pumps in drying processes of wet materials // Khimicheskaya tekhnologiya (Chemical Industry). 2002. № 9. P. 43-47. (in Russ.).

29. Nosov G.A., Kesoyan G.A., Myasoedenkov V.M., Nabi Lai Bangura. Evaporation-crystallization with the use of heat pump // Khimicheskaya tekhnologiya (Chemical Technology). 2002. № 5. P. 32-35. (in Russ.).

30. Nosov G.A., Myasoedenkov V.M., Khafi Ali, Nabi Lai Bangura. Adiabatic crystallization using heat pump // Khimicheskaya tekhnologiya (Chemical Technology). 2004. № 3. P. 35-40. (in Russ.).

31. Al-Harahsheh Adnan M. Theoretical analyses of energy saving in a direct contact evaporative crystallization through the installation of heat pump // Desalination. 2010. V. 251. № 1-3. P. 47–52.

32. Al-Harahsheh Adnan M. A heat pump in a countercurrent crystallization process // Appl. Therm. Eng. 2005. V. 25. P. 545–555.

33. Al-Harahsheh Adnan M. Theoretical analyses of energy saving in indirect contact evaporative crystallization by using combined cycle of vapor recompression heat pump and throttling valve // Jordan J. Mechan. & Ind. Eng. 2010. V. 4. № 3. P. 358–363.

34. Myasoedenkov V.M., Nosov G.A., Khaybulina E.M., Uvarov M.E. Countercurrent crystallization with heat pump // Vestnik MITHT (Fine Chemical Technologies). 2007. V. 2. № 6. P. 75–83. (in Russ.).

35. Nosov G.A., Uvarov M.E., Myasoedenkov V.M. Recrystallization of substances from solutions by the use of a heat pump // Vestnik MITHT (Fine Chemical Technologies). 2009. V. 4. № 1. P. 64–68. (in Russ.).

36. Myasoedenkov V.M., Khaybulina E.M. Efficiency of the heat pump in the installation of countercurrent crystallization with food in the center // Uspekhi v himii i himicheskoj tekhnologii (Advances in Chemistry and Chemical Technology). 2010. V. 24.

37. № 11. P. 106–110. (in Russ.).

38. Myasoedenkov V.M., Nosov G.A. Razina M.N. Fractional melting using the heat pump // Vestnik MITHT (Fine Chemical Technologies). 2007. V. 2. № 1. P. 18–25. (in Russ.).

39. Khaybulina E.M. Separation of mixtures by fractional melting and countercurrent fractional crystallization with the use of heat pumps: diss. … Ph.D. (Eng.). Moscow, 2013. 207 p. (in Russ).

40. Clasen H. Optimale Kombination von Kristallisation und Rektifikation zur Trennung nicht – isomerierbarer Isomerenqemischen // Chemie Ing. Techn. 1967. B. 39. Heft 22. S.1279–1285.

41. Gel’perin N.I., Nosov G.A. Separation of mixtures by combining some mass-exchange processes // Khimicheskaya promyshlennost’ (Chemical Industry). 1979. № 11. P. 677–681. (in Russ.).

42. Gorshtein G.I. Repeated cycles of crystallization // Trudy IREA (Proceedings of IREA). 1951. V. 20. P. 96–109. (in Russ.).

43. Nosov G.A., Sorokin V.I., Terekhova Yu.O. Two section evaporation-crystallization with the use of heat pumps // Khimicheskaya tekhnologiya (Chemical Technology). 2013. № 9. P. 570–575. (in Russ.).

44. Bel’skaya V.I. Development of energy saving options evaporation-crystallization: diss. … Ph.D. (Eng.). Moscow, 2013. 162 p. (in Russ).

45. Uvarov M. E. Recrystallization of substances from solutions with the use of heat pumps: diss. … Ph.D. (Eng.). Moscow, 2013. 171 p. (in Russ.).

46. Nosov G.A., Uvarov M.E. Two stage recrystallizations with solvent recovery // Tonkiye khimicheskiye tekhnologii (Fine Chemical Technologies). 2017. V. 12. № 1. P. 50–56. (in Russ.).

47. Nosov G.A., Bel’skaya V.I., Zhil’tsov V.S. Separation of mixtures by combination of crystallization and continuous distillation with the use of heat pumps // Vestnik MITHT (Fine Chemical Technologies). 2014. V. 9. № 3. P. 31–35. (in Russ.).

48. Karasev V.V. Separation of binary mixtures by a combination of crystallization and distillation: diss. … Ph.D. (Eng.). Moscow, 1977. 200 p. (in Russ.).

49. Banshats R.Sh. Separation of nonideal binary mixtures by combining rectification processes and fractional crystallization: diss. … Ph.D. (Eng.). Moscow, 1985. 192 p. (in Russ.).

50. Nosov G.A., Mikhailov M.V., Absattarov A.I. Separation of mixtures by combining rectification and fractional crystallization processes // Tonkiye khimicheskiye tekhnologii (Fine Chemical Technologies). 2017. V. 12. № 3. P. 44–51. (in Russ.).

51. Gorelik A.G. Desublimate in the chemical industry. Moscow: Khimiya Publ., 1986. 272 p. (in Russ.).

52. Ramm V.M. Absorption of gases. Moscow: Khimiya Publ., 1976. 656 p. (in Russ.).


For citation:


Nosov G.A., Mikhailov M.V. PROSPECTS OF APPLYING HEAT PUMPS UPON CARRYING OUT COMBINED MASS TRANSFER PROCESSES. Fine Chemical Technologies. 2018;13(1):55-65. (In Russ.) https://doi.org/10.32362/2410-6593-2018-13-1-55-65

Views: 130


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)