Preview

Fine Chemical Technologies

Advanced search

Prospects of Applying Biogenic Quantum Dots of Silver, Cadmium and Zinc Sulfides Nanoparticles to Create Polymeric Bionanocomposite Materials

https://doi.org/10.32362/2410-6593-2019-14-3-50-59

Full Text:

Abstract

The possibility of applying silver, cadmium and zinc sulfide nanoparticles (npAg2S, npCdS and npZnS) obtained using Shewanella oneidensis MR-1 and Bacillus subtilis 168 bacterial cultures for the creation of a new class of polymeric bionanocomposite materials was investigated. Biogenic nanoparticles obtained in aqueous solutions of the corresponding salts in the presence of various types of microorganisms are characterized by the presence of protein molecules on their surface. The molecules composition is determined by the bacterial culture. Proteins stabilize them and allow the nanoparticles to covalently join the active groups of polymeric carriers. Aminated chloromethylated polystyrene microspheres, as well as ion-exchange resins of various types, were used as polymeric matrices. Analysis of interaction with them can be used as a method for studying the properties of biogenic nanoparticles of metal sulfides for subsequent successful selection of a polymeric carrier. The immobilization of biogenic nanoparticles of metal sulfides onto the surface of aminated chloromethylated polystyrene microspheres was found to depend on the level of stability of aqueous nanoparticle suspensions and is determined by the negative charge of biogenic npAg2S, npCdS and npZnS, which suggests covalent binding and the electrostatic interaction of the components in the composition of the polymer bionanocomposite. A comparative analysis of the parameters of nanoparticles depending on the strain used in the biosynthesis was carried out. Analysis of the main physicochemical characteristics of npCdS and npZnS showed that the small size of nanoparticles (npCdS - 5 nm, npZnS - up to 2 nm) and the presence of luminescence peaks at wavelengths less than 400 nm classify them in the blue region of the fluorescence spectrum and identify them as quantum dots. Thus, the possibility of introducing fluorescent quantum dots of nanoparticles of metal sulfides of biogenic origin into various polymeric matrices has been demonstrated, which contributes to the expansion of the horizons for using a new class of nanoparticles to create polymeric bionanocomposites.

About the Authors

O. A. Zhuravliova
State Research Institute of Genetics and Selection of Industrial Microorganisms of National Research Centre «Kurchatov Institute»
Russian Federation

Olga A. Zhuravliova - Junior Researcher of the Laboratory of Protein Engineering.

1, 1-st Dorozhniy proezd, Moscow 117545

ResearcherID: О-8437-2015



T. A. Voeikova
State Research Institute of Genetics and Selection of Industrial Microorganisms of National Research Centre «Kurchatov Institute»
Russian Federation

Tatiana A. Voeikova - Ph.D. (Biology), Chief Researcher of the Laboratory of Protein Engineering.

1, 1-st Dorozhniy proezd, Moscow 117545



S. A. Kedik
MIREA - Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies),
Russian Federation

Stanislav A. Kedik - D.Sc. (Engineering), Professor, Head of the Chair of Biotechnology and Industrial Pharmacy.

86, Vernadskogo pr., Moscow 119571



I. A. Gritskova
MIREA - Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies),
Russian Federation

Inessa А. Gritskova - D.Sc. (Chemistry), Professor of the S.S. Medvedev Chair of Chemistry and Technology of Macromolecular Compounds.

86, Vernadskogo pr., Moscow 119571



S. A. Gusev
Federal Research and Clinical Center of Physico-Chemical Medicine of Federal Medical Biological Agency of Russia
Russian Federation

Sergey A. Gusev - D.Sc. (Medicine), Professor, Head of the Morphology Laboratory.

1A, Malaya Pirogovskaya st., Moscow 119435

ResearcherID: А-6077-2014



V. M. Retivov
Research Institute of Chemical Reagents and High-Purity Chemical Substances of National Research Centre «Kurchatov Institute»
Russian Federation

Vasiliy M. Retivov - Ph.D. (Chemistry), Head of the Analytical Testing Center.

3, Bogorodsky Val st., Moscow 107076



E. I. Kozhukhova
Research Institute of Chemical Reagents and High-Purity Chemical Substances of National Research Centre «Kurchatov Institute»
Russian Federation

Evgeniya I. Kozhukhova - Junior Researcher.

3, Bogorodsky Val st., Moscow 107076



V. G. Debabov
State Research Institute of Genetics and Selection of Industrial Microorganisms of National Research Centre «Kurchatov Institute»
Russian Federation

Vladimir G. Debabov - Academician of RAS, D.Sc. (Biology), Scientific Director.

1, 1-st Dorozhniy proezd, Moscow 117545


References

1. Volkova E.V., Lukashevich A.D., Levacheva I.S., Levachev S.M., Gusev S.A., Gritskova I.A. Choosing polymer microspheres for carrying out the latex agglutination reaction in plates. VestnikMITHT=Fine Chemical Technologies. 2013; 8(6):68-72. (in Russ.)

2. Brazhnik K.I., Baryshnikova M.A, Sokolova Z.A., Nabiev I.R., Sukhanova A.V. New method in the study and early diagnosis of cancer with the use of detection systems based on fluorescent nanocrystals. Rossijskij bioterapevticheskij zhurnal = Russian Journal of Biotherapy. 2013; 12(3):11-24. (in Russ.)

3. Ali S.M., Ramay S.M., Aziz M.M., Ur-Rehman N., Al Garow M.S., Al Ghamad S.S., Machmood A., Al Khuraiji T.S., Atig S. Efficiency enhancement of perovskite solar cells by incorporation of CdS quantum dot through fast electron injection. Organic Electronics. 2018; 62:21-25. https://doi.org/10.1016/j.orgel.2018.07.012

4. Bouccara S., Sitbon G., Fragola A., Lorette V., Lequeny N., Pons T. Enhancing fluorescence in vivo imaging using inorganic nanoprobes. Current Opinion in Biotechnology. 2015; 34:65-72. https://doi.org/10.1016/j.copbio.2014.11.018

5. Ye Z., Kong L., Chen F., Chen Z., Li Y., Lin C. A comparative study of photo catalytic activity of ZnS photo catalyst for degradation of various dyes. Optik. 2018; 164:345354. https://doi.org/10.1016/j.ijleo.2018.03.030

6. Hosseini M.R., Sarvi M.N. Recent achievements in the microbial synthesis of semiconductor metal sulfide nanoparticles. Materials Science in Semiconductor Processing. 2015; 40:293-301. https://doi.org/10.1016/j.mssp.2015.06.003

7. Suresh A.K., Doktycz M.J., Wang W., Moon J.-W., Gu B., Meyer III H.M., Hensley D.K., Allison D.P., Phelps T.J, Pelletier D.A. Monodispersed biocompatible silver sulfide nanoparticles: facile extracellular biosynthesis using y-proteobacterium Shewanella oneidensis. Acta Biomateriala. 2011; 7(12):4253-4258. https://doi.org/10.1016/j.actbio.2011.07.007

8. Yue L, Qi S., Wang J., Cai J., Xin B. Controllable biosynthesis and characterization of a-ZnS and P-ZnS quantum dots: Comparing their optical properties. Materials Science in Semiconductor Processing. 2016; 56:115-118. https://doi.org/10.1016/j.mssp.2016.07.015

9. Qi P., Zhang D., Zeng Y, Wan Y Biosynthesis of CdS nanoparticles: A fluorescent sensor for sulfate-reducing bacteria detection. Talanta. 2016; 147:142-146. https://doi.org/10.1016/j.talanta.2015.09.046

10. Gao X., Levenson R. M., Chung L. W., Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology. 2004; 22(8):969-976. https://doi.org/10.1038/nbt994

11. Voeikova T.A., Zhuravliova O.A., Bulushova N.V., Veiko V.P., Ismagulova T.T., Lupanova T.N., Shaitan K.V., Debabov V.G. The «protein corona» of silver-sulfide nanoparticles obtained using Gram-negative and -positive bacteria. Molekulyarnaya genetika, mikrobiologiya i virusologiya = Molecular Genetics, Microbiology and Virology. 2017; 35(4):204-211.

12. Zhuravliova O.A., Voeikova T.A., Khaddazh M., Bulushova N.V., Ismagulova T.T., Bakhtam A.V., Gusev S.A., Gritskova I.A., Lupanova T.N., Shaitan K.V., Debabov V.G. Bacterial synthesis of cadmium and zinc sulfide nanoparticles: Characteristics and perspective of their application. Molekulyarnaya genetika, mikrobiologiya i virusologiya = Molecular Genetics, Microbiology and Virology. 2018; 36(4):191-198. (in Russ.). https://doi.org/10.17116/molgen201836041191

13. Bakhtina A.V, Sivaev A.A., Levachev S.M., Gusev S.A., Lobanova N.A., Lazov M.A., Gritskova I.A. Synthesis of amino-containing polymeric microspheres by seed copolymerization for applications in biotechnology. Tonkie khimicheskie tekhnologii = Fine Chemical Technologies. 2017; 12(4):75-84. (in Russ.). https://doi.org/10.32362/2410-6593-2017-12-4-75-84

14. Lur'e A.A. Sorbents and chromatographic bases. Moscow: Khimiya Publ., 1972. 320 p. (in Russ.)

15. Sadovnikov S.I., Gusev A.I., Rempel A.A. Semiconductor nanostructured lead, cadmium and silver sulfides. Moscow: FIZMATLIT Publ., 2018. 428 p. (in Russ.)

16. Zdobnova T.A., Lebedenko E.N., Deyev SM. Quantum dots for molecular diagnostics of tumors. Acta Naturae (англоязычная версия). 2011; 3(1):29-47.


Supplementary files

1. Fig. 3. Scanning electron microscope images: А – npAg2S/ S. oneidensis MR-1; B – npAg2S/B. subtilis 168; C – npCdS/ B. subtilis 168; D – npZnS/B. subtilis 168.
Subject
Type Research Instrument
View (176KB)    
Indexing metadata

For citation:


Zhuravliova O.A., Voeikova T.A., Kedik S.A., Gritskova I.A., Gusev S.A., Retivov V.M., Kozhukhova E.I., Debabov V.G. Prospects of Applying Biogenic Quantum Dots of Silver, Cadmium and Zinc Sulfides Nanoparticles to Create Polymeric Bionanocomposite Materials. Fine Chemical Technologies. 2019;14(3):50-59. (In Russ.) https://doi.org/10.32362/2410-6593-2019-14-3-50-59

Views: 257


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)