Preview

Fine Chemical Technologies

Advanced search

Dicarba-nido-undecaborates: topological analysis

Full Text:

Abstract

Calculations of parameters of function of full electron density in molecules of dicarba-nido-undecaborates were carried out by the first order Promega method using MP2(full)/6-311++G(2d,p) level of theory. The features of electron structure of undecaborates and the relation of parameters of function of full electron density with their chemical properties were revealed.

About the Authors

S. P. Knyazev
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation


E. G. Gordeev
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation


A. Yu. Kostyukovitch
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation


A. Yu. Shkulipa
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation


References

1. Kim D.H., Won J.H., Kim S.-J., Ko J., Kim S.H., Cho S., Kang S.O. Dicarbollide analogues of the constrained-geometry polymerization catalyst // Organometallics. 2001. V. 20. № 21. P. 4298-4300.

2. Clark J.F., Chamberlin R.M., Abney K.D., Strauss S.H. Design and use of redox-recyclable organometallic extractants for the cationic radionuclides 137Cs+ and 90Sr2+ from waste solutions // Environ. Sci. Technol. 1999. V. 33. № 14. P. 2489-2491.

3. Plesek J., Gruner B., Cisarova I., Baca J., Selucky P, Rais J. Functionalized cobalt bis(dicarbollide) ions as selective extraction reagents for removal of M2+ and M3+ cations from nuclear waste, crystal and molecular structures of the [8,8'-μ-CIP(O)(O)2(1,2-C2B9H10)2-3,3'-Co]HN(C2H5)3 and [8,8'-μ-Et2NP(O)(O)2(1,2-C2B9H10)2-3,3'-Co](HN(CH3)3) // J. Organometallic Chem. 2002. V. 657. № 1-2. P. 59-70.

4. Dixon D.A., Kleier D.A., Halgren T.A., Hall J.H., Lipscomb W.N. Localized orbitals for polyatomic molecules. 5. The closo boron hydrides BnHn2- and carboranes C2Bn-2Hn // J. Am. Chem. Soc. 1977. V. 99. № 10. P. 6226-6237.

5. King R.B. Three-dimensional aromaticity in polyhedral boranes and related molecules // Chem. Rev. 2001. V. 101. № 5. P. 1119-1152.

6. Chen Z., King R.B. Spherical aromaticity: Recent work on fullerenes, polyhedral boranes, and related structures // Chem. Rev. 2005. V. 105. № 10. P. 3613-3642.

7. Stone A.J. New approach to bonding in transition-metal clusters and related compounds // Inorg. Chem. 1981. V. 20. № 2. P. 563-571.

8. Бейдер Р. Атомы в молекулах. Квантовая теория. - М.: Мир, 2001. 532 с.

9. Gillespie R.J., Popelier P.L.A. Chemical bonding and molecular geometry from Lewis to electron densities. - NY, Oxford: Oxford University Press, 2001. 268 p.

10. Koritsanszky T.S., Coppens P. Chemical applications of X-ray charge-density analysis // Chem. Rev. 2001. V. 101. № 5. P. 1538-1627.

11. Matta C.F., Boyd R.J. The quantum theory of atoms in molecules: from solid state to DNA and drug design. - Wiley-VCH Verlag GmbH & Co. KGaA, 2007. 568 p.

12. Kononova E.G., Klemenkova Z.S., Balagurova E.V., Pisareva I.V. A new look at the structure and reactivity of 10-vertex nido-dicarbaboranes // J. Mol. Struct. 2010. V. 970. № 1-3. P. 36-41.

13. Antipin M.Yu., Polyakov A.V., Tsirelson V.G., Kapphan M., Grushin V.V., Struchkov Yu.T. Molecular structure and the distribution of electron density in 9-azido-m-carborane at 160 K // Organomet. Chem. USSR. 1990. V. 3. P. 421-424.

14. Antipin M., Boese R., Blaser D., Maulitz A. Molecular crystal structure and electron density distribution in the crystal of pentaethyl-1,5-dicarba-closo-pentaborane [C2B3(Et)5] at 120 K // J. Am. Chem. Soc. 1997. V. 119. № 2. P. 326-333.

15. Lyssenko K.A., Antipin M.Yu., Lebedev V.N. Topological analysis of the electron density distribution in the crystal of 8,9,10,12-tetrafluoro-o-carborane on the basis of the high-resolution X-ray diffraction data at 120 K // Inorg. Chem. 1998. V. 37. № 22. P. 5834-5843.

16. Kononova E.G., Leites L.A., Bukalov S.S., Zabula A.V., Pisareva I.V., Konoplev V.E., Chizhevsky I.T. Experimental and theoretical study of the vibrational spectrum, structure and electron density distribution of the [2-CB10H11]− anion // Chem. Phys. Lett. 2004. V. 390. № 1-3. P. 279-284.

17. Лысенко К.А., Голованов Д.Г., Мещеряков В.И., Кудинов А.Р., Антипин М.Ю. Исследование природы слабых меж- и внутримолекулярных взаимодействий в кристалле. Сообщение 5. Взаимодействия Na…H−B в кристалле натриевой соли заряд-компенсированного [9-SMe2-7,8-C2B9H10]− нидо-карборана // Известия АН. Сер. хим. 2005. № 4. С. 911-918.

18. Kononova E.G., Leites L.A., Bukalov S.S., Pisareva I.V., Chizhevsky I.T. Experimental and theoretical study of the vibrational spectrum, structure and electron density distribution of neutral 11-vertex dicarbaborane 2,3-C2B9H11 // J. Mol. Struct. 2006. V. 794. № 1-3. P. 148-153.

19. Glukhov I.V., Lyssenko K.A., Korlyukov A.A., Antipin M.Yu. Carboranes: Chemical concepts derived from the AIM study of the experimental and theoretical electron density distribution functions // Faraday Discuss. 2007. V. 135. P. 203-215.

20. Jablonski M., Palusiak M. Basis set and method dependence in quantum theory of atoms in molecules calculations for covalent bonds // J. Phys. Chem. A. 2010. V. 114. № 47. P. 12498-12505.

21. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09 Revision A.02. - Gaussian, Inc., Wallingford CT, 2009.

22. Keith T.A. AIMAll 10.05.04 Standard (http://aim.tkgristmill.com).

23. Станко В.И., Братцев В.А., Князев С.П. Строение и реакционная способность клозо- и нидо-карборанов // Успехи химии. 1975. Т. 44. № 8. С. 1377-1418.

24. Князев С.П., Братцев В.А., Станко В.И. Структурные перегруппировки в ряду дикарба-нидо-ундекаборатов при алкилировании. Получение и свойства нового типа дикарба-нидо-ундекаборатов(1-) − 11-R-2,7-C2B9H11− // Докл. АН СССР. 1977. Т. 234. № 4. С. 837-840.

25. Князев С.П., Братцев В.А., Станко В.И. Взаимосвязь электронного строения и реакци-онной способности дикарба-нидо-ундекаборатов, роль стереохимии в протекании химически инициируемых термических перегруппировок // Докл. АН СССР. 1979. Т. 246. № 2. С. 368-372.


For citation:


Knyazev S.P., Gordeev E.G., Kostyukovitch A.Yu., Shkulipa A.Yu. Dicarba-nido-undecaborates: topological analysis. Fine Chemical Technologies. 2011;6(6):35-42. (In Russ.)

Views: 42


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)