DEVELOPMENT OF A METHOD FOR THE SYNTHESIS OF PLASMONIC GOLD NANOPARTICLES FOR A WIDE SPECTRAL REGION 520-720 nm
https://doi.org/10.32362/2410-6593-2017-12-5-56-64
Abstract
About the Authors
I. I. FaskhutdinovaRussian Federation
Student, Ya.K. Syrkin Chair of Physical Chemistry
86, Vernadskogo Pr., Moscow 119571, Russia
A. S. Mikhailov
Russian Federation
Ph.D. (Engineering), Senior Researcher, Ya.K. Syrkin Chair of Physical Chemistry
86, Vernadskogo Pr., Moscow 119571, Russia
B. I. Shapiro
Russian Federation
Dr.Sc. (Chemistry), Professor, Ya.K. Syrkin Chair of Physical Chemistry
86, Vernadskogo Pr., Moscow 119571, Russia
References
1. Shah M., Badwaik V., Kherde Y., Waghwani H.K., Modi T., Aguilar Z.P., Rodgers H., Hamilton W., Marutharaj T., Webb C., Lawrenz M.B., Dakshinamurthy R. Gold nanoparticles: Various methods of synthesis and antibacterial applications // Frontiers in Bioscience. 2014. № 19. P. 1320–1344.
2. Aherne D., Ledwith D.M., Gara M., Kelly J.M. Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature // Adv. Funct. Mater. 2008. № 18. P. 2005–2016.
3. Millstone J.E., Hurst S.J., Metraux G.S., Cutler J.I., Mirkin C.A. Colloidal gold and silver triangular nanoprisms // Small. 2009. № 5. P. 646–664.
4. Sun Y.G. Metal nanoplates on semiconductor substrates // Adv. Funct. Mater. 2010. № 20. P. 3646–3657.
5. Bastys V., Pastoriza-Santos I., RodríguezGonzález B., Vaisnoras R., Liz-Marzán L.M. Formation of silver nanoprisms with surface plasmons at communication wavelengths // Adv. Funct. Mater. 2006. № 16. P. 766–773.
6. http://www.samsung.com/global/tv/ (Date of access: 15.03.2017)
7. Ershov B.G. Metal nanoparticles in aqueous solutions: electronic, optical and catalytic properties //Rossiyskiy khimicheskiy zhurnal (Russian Chemical Journal) 2001. V. XLV. № 3. P. 20–30. (in Russ.)
8. Gao C., Goebl J., Yin Y. Seeded growth route to noble metal nanostructures // J. Mater. Chem. C. 2013. V. 1. P. 3898–3909.
9. Silva J. N., Saade J., Farias P. M. A., Falcão E. H. L. Colloidal synthesis of silver nanoprisms in aqueous medium: Influence of chemical compounds in UV/Vis absorption spectra // Advances in Nanoparticles. 2013. № 2. P. 217-222.
10. Zhang C., Sun L-D., Yan C-H. Noble metal plasmonic nanostructure related chromisms // Inorg. Chem. Front., 2016. № 3. P. 203–217.
11. Ye X.C., Jin L.H., Caglayan H., Chen J., Xing G.Z., Zheng C., Doan-Nguyen V., Kang Y.J., Engheta N., Kagan C.R., Murray C.B. Design of an ultra-sensitive gold nanorod colorimetric sensor and its application based on formaldehyde reducing Ag+ // ACS Nano. 2012. № 6. P. 2804–2817.
12. Ye X.C., Gao Y.Z., Chen J., Reifsnyder D.C., Zheng C., Murray C.B. Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures // Nano Lett. 2013. № 13. P. 2163–2171.
13. Ye X.C., Zheng C., Chen J., Gao Y.Z., Murray C.B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods // Nano Lett. 2013. № 13. P. 765–771.
14. Bychkovskiy P.M., Kladiev А.А., Solomevich S.О., Schegolev S.Yu. Gold nanoparticles: Synthesis, properties, biomedical application // Rossiyskiy bioterapevticheskiy zhurnal (Russian Biotherapeutic Journal). 2011. № 3. V. 10. P. 37–46. (in Russ.)
Review
For citations:
Faskhutdinova I.I., Mikhailov A.S., Shapiro B.I. DEVELOPMENT OF A METHOD FOR THE SYNTHESIS OF PLASMONIC GOLD NANOPARTICLES FOR A WIDE SPECTRAL REGION 520-720 nm. Fine Chemical Technologies. 2017;12(5):56-64. (In Russ.) https://doi.org/10.32362/2410-6593-2017-12-5-56-64