Preview

Fine Chemical Technologies

Advanced search

THE PYROCARBON FORMATION MECHANISM DURING THE HYDROCARBON PYROLYSIS PROCESS

https://doi.org/10.32362/2410-6593-2017-12-4-36-42

Full Text:

Abstract

Experimental results confirming the mechanism of pyrocarbon formation through the steps of high-molecular pyrolysis products forming in the gas phase are presented. Adsorption of high-molecular pyrolysis products on the active centers of the substrate localized at the boundaries of the contacts of its crystallites and their subsequent carbonization is confirmed. The decreasing in the length of the substrate crystallites contact boundaries leads to the increase in the content of high-molecular compounds in the gas and to the decrease in the hydrogen concentration is shown. The relation between the composition of the exhaust gas and the surface of the sealing material creates the prerequisites for controlling the pyro-consolidation process according the composition of the off-gas. The composition of high-molecular liquid pyrolysis products was identified. The difference in the composition of high-molecular pyrolysis products of the propane-butane fraction and the electric cracking gas was established. The influence of raw materials and pyrolysis conditions on the group composition of high-molecular pyrolysis products formed is shown.

About the Authors

B. V. Peshnev
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation
Moscow 119571, Russia


A. S. Filimonov
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation
Moscow 119571, Russia


S. V. Baulin
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation
Moscow 119571, Russia


O. S. Sledz
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation
Moscow 119571, Russia


N. Yu. Asilova
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation
Moscow 119571, Russia


References

1. Smirnova N.S., Shlyapin D.A., Surovikin Yu.V., Anoshkina E.A., Temerev V.L., Shitova N.B., Tsyrulnikov P.G. The influence of the carbon support on the catalytic characteristics of Pd / sibunite and Pd-Ga / sibunite during the liquid phase hydrogenation of acetylene // Khimiya tverdogo topliva (Solid Fuel Chemistry). № 1. P. 17–22. (in Russ.).

2. Surovikin Yu.V., Shaytanov A.G., Rezanov I.V. Electrical conductivity of nanocomposite particles based on carbon black // Dinamika system, mekhanizmov i mashin (The dynamics of Systems, Mechanisms and Machines). 2016. V. 3. № 1. P. 296–300. (in Russ.).

3. Surovikin Yu.V., Lykholobov V.A., Syrieva A.V. Properties of the pyrolytic matrix of a granular nanocomposite // Dinamika system, mekhanizmov i mashin (The dynamics of Systems, Mechanisms and Machines). 2016. V. 3. № 1. P. 288–295. (in Russ.).

4. Grisdale R.O. The formation of black carbon // J. Appl. Phys. 1953. V. 24. № 9. P. 1082–1091.

5. Grisdale R.O. The formation of carbon black // J. Appl. Phys. 1953. V. 24. № 9. P. 1288–1296.

6. Kostikov V. I. Carbon-carbon composite materials // ZhVHO im. D.I. Mendeleeva (Mendeleev Chemistry Journal). 1989. V. 34. № 5. P. 492–501. (in Russ.).

7. Tesner P.A., Gorodetsky A.E., Borodina L.M., Denisevih E.V., Lyahov A.G. Two-stage model of pyrocarbon formation and its experimental verification // DAN SSSR (Reports of the Academy of Sciences of the USSR). 1977. V. 235. № 2. P. 410–413. (in Russ.).

8. Filimonov A.S., Peshnev B.V., Asilova N.Yu. The mechanism of pyrolytic carbon formation on the carbon black surface // Vestnik MITHT (Fine Chemical Technologies). 2013. V. 8. № 3. P. 112–116. (in Russ.).

9. Filimonov A.S., Peshnev B.V., Surovikin Yu.V., Trofimova N.N., Asilova N.Yu. Influence of the carbon surface on the pattern of pyrolytic carbon formation // Vestnik MITHT (Fine Chemical Technologies). 2014. V. 9. № 6. P. 99–102. (in Russ.).

10. Surovikin Yu.V., Shaytanov A.G., Syreva A.V., Rezanov I.V. The properties of particles of nanodispersed technical carbon after thermal exposure // In book: Tekhnika i tekhnologiya nephtekhimicheskogo i nephtegazovogo proizvodstva (Technique and technology of petrochemical and oil and gas production). The Materials of the 5th Int. scientific and technical conf. 2015. P. 119–120. (in Russ.).

11. Estrin R.I. Development of a method for the integrated analysis of soot (carbon black): The diss. ... Ph.D. (Engineering). Moscow, 1988. 173 p. (in Russ.).

12. Pesin O.Yu., Estrin R.I. The method of complex analysis of soot (CompAS) and the prospects for its use // Khimiya tverdogo topliva (Solid Fuel Chemistry). 1997. № 3. P. 14–28. (in Russ.).

13. Estrin R.I. Information capabilities of the method of complex analysis of soot // Nauka i tehnologiya uglevodorodov (Science and Technology of Hydrocarbons). 2000. № 4 (11). P. 92–101. (in Russ.).

14. Gusev A.I. Nanostructures, nanomaterials, nanotechnologies. Moscow: Phismatlit Publ., 2007. 416 p. (in Russ.).

15. Chemicals from coal / Ed. by Falbe Yu. Moscow: Khimiya Publ., 1980. 616 p. (in Russ.).

16. Sunyaev Z.I. Oil carbon. Moscow: Khimiya, Publ., 1980. 271 p. (in Russ.).


For citation:


Peshnev B.V., Filimonov A.S., Baulin S.V., Sledz O.S., Asilova N.Yu. THE PYROCARBON FORMATION MECHANISM DURING THE HYDROCARBON PYROLYSIS PROCESS. Fine Chemical Technologies. 2017;12(4):36-42. (In Russ.) https://doi.org/10.32362/2410-6593-2017-12-4-36-42

Views: 126


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)