ХИМИЯ И ТЕХНОЛОГИЯ НЕОРГАНИЧЕСКИХ МАТЕРИАЛОВ

УДК 54.021

СОСТАВ АНОДНЫХ ОКСИДНЫХ ПЛЕНОК НА КРИСТАЛЛАХ InAs

А.В. Артамонов^{1,@}, инженер, В.П. Астахов¹, главный специалист, И.Б. Варлашов², зам. зав. кафедрой по научной работе, Н.И. Евстафьева¹, начальник отдела, П.В. Митасов², аспирант

¹ОАО «Швабе-Фотосистемы», Москва, 117545 Россия

²Национальный исследовательский университет «МЭИ», Москва,111250 Россия [®]Автор для переписки, e-mail: art-bass@mail.ru

Методом рентгеновской фотоэлектронной спектроскопии (РФЭС) исследован элементный и химический состав анодных оксидных пленок (АОП) арсенида индия, полученных анодным окислением в гальваностатическом режиме при двух значениях плотности анодного тока (j) в электролите, содержащем ионы фтора. Определены особенности процесса накопления атомов фтора при выращивании АОП и влияние значения j на этот процесс.

Ключевые слова: арсенид индия, анодная оксидная пленка, рентгеновская фотоэлектронная спектроскопия, фторид-ион, элементный состав.

THE COMPOSITION OF ANODIC OXIDE FILMS ON InAs CRYSTALS

A.V. Artamonov^{1,@}, V.P. Astakhov¹, I.B. Varlashov², N.I. Evstaf'eva¹, P.V. Mitasov²

¹JSC «Shvabe-Photosystems», Moscow, 117545 Russia

²National Research University «MEI», Moscow, 111250 Russia

[@]Corresponding author e-mail: art-bass@mail.ru

The elemental and chemical composition distribution over the indium arsenide anodic oxide films (AOF) thickness created by anodic oxidation in a galvanostatic mode at two current density values in an electrolyte containing fluoride ions are studied by X-ray photoelectron spectroscopy. The received data indicate that AOF consist of the fluoride-oxygen compounds of In and As (In and As oxyfluorides) and indium oxide (In_2O_3). Fluorine is accumulated near InAs–AOF boundary. Increasing of the current density from 0.05 to 0.5 mA/cm² at constant value of both forming voltage and electrolyte composition leads to fluorine concentration near AOF–InAs boundary increasing approximately in 3 times. In turn, the forming voltage increasing at fixed current density also increases the fluorine concentration near InAs–AOF boundary but in less extent: with forming voltage increasing on 5 V more the fluorine content in the bulk AOF increases in ~1.2 and ~1.5 times at current densities of 0.05 and 0.5 mA/cm², respectively. Thus, it is possible to change fluorine content near AOF–InAs boundary at constant fluorine-containing components concentration in initial electrolyte by varying current density and forming voltage of anodic oxidation.

Keywords: indium arsenide, anodic oxide film, X-ray photoelectron spectroscopy, fluorine, elemental composition.

Введение

При формировании защиты поверхности планарных *p*–*n*-переходов на кристаллах InAs в качестве первого диэлектрического слоя используют анодные оксидные пленки (АОП) [1]. Это позволяет обеспечивать необходимые малые значения плотности положительного встроенного заряда за счет возможности модификации границы раздела диэлектрик-полупроводник, а также демпфировать механические напряжения, вызываемые отличием коэффициентов термического расширения полупроводника и второй (пассивирующей) диэлектрической пленки. Указанное обстоятельство особенно важно для охлаждаемых фоточувствительных кристаллов.

Существенному снижению плотности положи-

тельного встроенного заряда вблизи границы раздела диэлектрик–полупроводник, в свою очередь, способствует введение в электролиты при формировании АОП фторсодержащей компоненты [2, 3]. Однако механизм такого явления пока недостаточно изучен. Его уточнению способствуют данные о распределении элементного и химического состава по толщине АОП. Элементный и химический состав АОП толщиной менее 200 Å, выращенных в электролитах, содержащих фторид аммония NH₄F, исследован в работах [4, 5]. По нашему мнению, расширение диапазона толщины АОП и использование различных значений плотности тока окажется безусловно полезным для выявления механизма формирования пленки.

Цель данной работы – установление характера распределения элементного и химического состава по толщине в интервале 0.02÷0.05 мкм АОП, выращенных в электролите с фторсодержащей компонентой при значительно отличающихся плотностях анодного тока.

Экспериментальная часть

В работе использовали пластины InAs марки ИМЭб (Арсенид индия. Технические условия ТУ 48–4–420–92) *п*-типа проводимости, вырезанные из объемного, выращенного методом Чохральского монокристалла InAs, с концентрацией основных носителей заряда ~ $(1\div2)\cdot10^{16}$ см⁻³ и подвижностью ~ $4\cdot10^4$ см²/В·с при 77 К. Пластины имели кристаллографическую ориентацию поверхности (111)А. После резки кристалла пластины подвергали последующим химико-механической и химико-динамической полировкам, травлению в водном растворе фтороводородной кислоты (осч, «Сигма Тек») (1:10) и обезжириванию в изопропиловом спирте. Толщина экспериментальных образцов составляла ~ 650 мкм.

Электролит для формирования АОП выбирали на основании литературных данных [3] в виде смеси этиленгликоля (чда, ООО «Химстройснаб») и концентрированного раствора аммиака (чда, «Сигма Тек») в соотношении 5:1 с добавкой 40%-ного водного раствора NH₄F (осч, «Сигма Тек») в количестве, обеспечивающем концентрацию NH₄F в электролите ~12 г/л.

Процесс анодирования проводили в лабораторной двухэлектродной ячейке с платиновым анодом в гальваностатическом режиме при плотностях тока 0.05 и 0.5 мА/см² до конечных напряжений 15, 20 и 25 В. В качестве катода использовали платиновый электрод, анодом служила полупроводниковая пластина. Послойное травление осуществляли ионами Аг⁺ с энергией 3 кэВ с использованием пушки Пеннинга, позволяющей получать достаточно широкое пятно, что гарантирует равномерное травление по площади образца. Травление проводили в отдельной камере предварительной обработки. Скорость травления составляла ~ (10÷14) Å в минуту при плотности тока пучка ионов 20 мкА/мм².

Измерения толщины и показателя преломления проводили на эллипсометре ЛЭФ-3М-I (длина волны излучения – 632 нм, угол падения пучка – 45°).

Распределение элементного состава полученных АОП по толщине исследовали на установке LHS-10 с полусферическим энергоанализатором и рентгеновской пушкой с двумя анодами (AlK_a, MgK_a). Возбуждение фотоэлектронов осуществляли фотонным пучком с энергией 1253.6 эВ, полученным путем облучения магниевого анода электронами с энергией 12 кэВ. Площадь поверхности сбора информации определяли фокусировкой энергоанализатора: она составляла ~ 15 мм², интегральный фототок ~ 10 нА. Для количественного анализа самые «сильные» пики переснимали в режиме с постоянной в диапазоне $\Delta E=50$ эВ энергией пропускания энергоанализатора. Интенсивность пиков измеряли в течение 100 мс и усредняли по трем измерениям. Калибровку энергоанализатора проводили по положению пиков уровней Ag3d_{5/2} (885.31 эВ), Au4f_{7/2} (1169.6 эВ) и AgMNN (357.84 эВ). Площадь анализируемых образцов составляла ~ 3 см². Для определения относительных концентраций химических элементов полученный пик от каждого элемента интегрировали с предварительным вычитанием фона. При этом диапазон интегрирования, в который входят сателлиты «встряски» и «стряхивания», для F составлял (565÷575) эВ, для О - (715÷735) эВ, для In - (715÷795) эВ, для As - (1100÷1120) эВ. Для расчета концентраций использовали только самые «сильные» пики элементов. Для In и As брали оба пика из дублета. Для In – $3d_{3/2}$ и $3d_{5/2}$, для As – $3p_{1/2}$ и $3p_{3/2}$, для О и F пики *Is*. Для расчета выбирали суммарный интеграл обоих пиков из дублета с суммированием коэффициента элементной чувствительности, взятого из рассчитанных для установки LHS-10 данных [6].

Остаточное давление в измерительной камере не превышало 10⁻⁹ Торр.

Результаты и их обсуждение

Режимы процессов анодного окисления, значения толщины (d) и показателя преломления (n) полученных АОП представлены в таблице.

Из данных таблицы следует, что для каждого из значений тока с ростом толщины АОП происходит увеличение показателя преломления, что свидетельствует об увеличении ее плотности. В свою очередь, эффективность роста АОП, определяемая как прирост толщины АОП, приходящийся на 1 В прироста напряжения, не зависит от плотности тока и для всех образцов составила ~ (20÷22) Å/В.

На рис. 1 и 2 для двух значений тока анодирования представлены экспериментальные профили распределения элементного состава по толщине АОП, определяемой временем ионного травления (*т*). Кривые получали непрерывным соединением экспериментальных точек, измеренных с шагом (10÷14) Å. Нулевые значения на оси абсцисс соответствуют поверхности АОП, а максимальные значения – границе АОП–InAs (началу участка насыщения профилей In и As).

Параметры процессов анодного окисления, значения толщины и показателя преломления полученных АОП

№ образца	Плотность тока <i>j</i> , мА/см ²	Конечное напряжение U_k , В	Длительность процесса АО, с	Толщина АОП <i>d</i> , Å	Показатель преломления <i>n</i>
1	0.05	15	714	339	1.80
2	0.05	20	966	420	1.83
3	0.05	25	1291	532	1.86
1 🗆	0.5	15	75	290	1.81
2 🗆	0.5	20	100	412	1.83
3□	0.5	25	167	502	1.88

Рис. 1. Профили распределения элементного состава по толщине АОП, выращенных при *j*=0.05 мА/см²: а) U_k =15 B, d_{AOII} =339 Å; б) U_k =20 B, d_{AOII} =420 Å; в) U_k =25 B, d_{AOII} =532 Å.

Рис. 2. Профили распределения элементного состава по толщине АОП, выращенных при *j*=0.5 мА/см²: a) U_k =15 B, d_{AOII} =290 Å; б) U_k =20 B, d_{AOII} =412 Å; в) U_k =25 B, d_{AOII} =502 Å.

Из рис. 1 и 2 видно, что все образцы имеют схожую форму профилей распределения элементного состава по толщине АОП. По всей толщине в АОП содержатся фтор, кислород, индий и мышьяк. В объеме АОП кислород распределен равномерно, а в «переходном» слое (до ~150 Å от границы раздела InAs-АОП) его концентрация постепенно уменьшается до границы с монокристаллическим InAs. Концентрация фтора в «переходном» слое увеличена относительно объема АОП. Расчет профилей распределения фтора (площади под кривой) показал, что с увеличением U_{μ} на 5 В содержание фтора в объеме АОП увеличивается в ~ 1.2 и ~ 1.5 раза при значении *ј* 0.05 и 0.5 мА/см², соответственно. При обоих значениях і по мере увеличения толщины АОП отношение концентрации кислорода к концентрации фтора (NO/NF) в «переходном» слое постепенно уменьшается и стремится к 1, а при j=0.5 мА/см² и $U_{\mu}=25$ В становится меньше 1. В свою очередь, концентрации In и As постепенно увеличиваются и при достижении границы раздела InAs-АОП достигают своего насыщения.

На образцах, полученных при j=0.5 мА/см², по мере увеличения толщины АОП фронт фтора «обгоняет» фронт кислорода, чего не происходит при j=0.05 мА/см². По-видимому, увеличение значения j в 10 раз в данном случае приводит к повышению скорости диффузии атомов фтора в объеме АОП и его быстрому накоплению вблизи границы раздела InAs–АОП. При этом происходит увеличение концентрации фтора в максимуме распределения в ~ 3 раза.

Таким образом, варьируя плотность тока и конечное напряжение при анодировании, можно изменять содержание фтора вблизи границы InAs-AOП при одной и той же концентрации фторсодержащей компоненты в исходном электролите.

По мере травления АОП наблюдается сдвиг максимума пика $\ln 3d_{5/2}$ сначала в сторону меньших значений кинетической энергии фотоэлектрона (E_k) , что говорит об увеличении энергии связи, а затем в сторону больших E_k . На рис. 3 показано изменение кинетической энергии фотоэлектрона пиков $\ln 3d_{5/2}$ и OI_s (рис. 3а, кривые 1 и 2), а также полной ширины на полувысоте (FWHF) пика $\ln 3d_{5/2}$ (рис. 3b) по мере травления АОП образца $\mathbb{N}2'$ ($j=0.5 \text{ мA/см}^2$, $U_k=20 \text{ B}$). Стоит отметить, что изменение значений E_k пиков $\ln 3d_{5/2}$ и OI_s , а также FWHF пика $\ln 3d_{5/2}$ по мере травления АОП для всех образцов носит однотипный характер.

Судя по рис. 3 (3в), значения FWHF меняются по мере травления, что говорит о наличии нескольких окисленных форм индия.

Сдвиг в сторону меньших значений E_k , начинающийся с 26-ой минуты травления, соответствует началу увеличения содержания фтора и уменьшению содержания кислорода и сопровождается увеличе-

нием значений FWHF пика In3d_{5/2}. Авторы [4] связывают химический сдвиг окисленной компоненты индия в сторону больших энергий связи с образованием оксифторида индия состава In_vO_vF_z. На наличие связей О-F также указывает смещение линии кислорода ОІ, (рис.3а, кривая 2) в сторону больших энергий связи на 26-ой минуте травления. Минимум в сдвиге наблюдается на 28-30-й минуте травления, когда концентрация фтора достигает максимального значения, а FWHF пика $\ln 3d_{5/2}$ продолжает расти. Далее E_k фотоэлектронов резко увеличивается, что соответствует уменьшению энергии связи, а концентрации фтора и кислорода уменьшаются. В этот момент травления также проходят свой максимум значения FWHF пика $\ln 3d_{5/2}$, которые далее уменьшаются до минимального значения.

Рис. 3. Изменение кинетической энергии выхода фотоэлектрона пиков In3d_{5/2} и O1₃, а также полной ширины на полувысоте (FWHF) пика In3d_{5/2} при травлении АОП образца №2' (*j*=0.5 мА/см², U_k=20 B).

На рис. 4 представлены пики $\ln 3d_{3/2}$ и $\ln 3d_{5/2}$ в трех точках, соответствующих 22, 30 и 39 минутам травления.

Полученные результаты указывают на наличие двух окисленных форм In (максимумы в области 802 и 810 эВ), характеризующихся значениями химического сдвига ~ 1 и ~ 1.25 эВ. Исходя из данных работы [7], можно предположить, что меньшее значение химического сдвига соответствует In в соединении In₂O₃. Смещение линий In3d_{5/2} и O1_s в сторону больших энергий связи второй окисленной компоненты, присутствующей в АОП и характеризующейся большим значением химического сдвига, равным 1.25 эВ, свидетельствует о наличии оксифторида $In_x O_v F_z$.

Рис. 4. Пики $\ln 3d_{3/2}$ и $\ln 3d_{5/2}$ в трех точках, соответствующих 22, 30 и 39 минутам травления.

Для As не замечено такого сдвига пиков, как в случае In, хотя и наблюдаются две отдельные, четко разделяющиеся компоненты As в окисленном и неокисленном состояниях. Пики $As3p_{1/2}$, $As3p_{3/2}$ и $As3d_{5/2}$ представлены на рис. 5. Обозначения (ох) и (InAs) свидетельствуют о нахождении атомов As в окисленном и неокисленном состояниях.

Интерпретация данных рис. 5 проведена на основе того постулата, что на первых стадиях ионного травления получается информация о As, связанном с кислородом в АОП. На следующих этапах травления по мере приближения к границе раздела InAs-AOП появляются, а затем становятся превалирующими пики, соответствующие As в составе InAs, т.е. неокисленному As. При этом учитывалось, что, согласно данным работы [8], в области пиков длина свободного пробега фотоэлектронов соответствует ~ 100 Å. Исходя из этих соображений, кривая, полученная на начальном этапе (22 мин травления), отнесена к АОП на расстоянии ~ 150 Å от границы раздела InAs-AOII, т.е. к окисленному As, а кривая, полученная на конечном этапе (39 мин травления) - к InAs, т.е. неокисленному As.

Полученное, согласно данным рис. 5, значение химического сдвига окисленной компоненты мышьяка составило 3.1 эВ, что гораздо меньше значений химического сдвига в оксидах As_2O_3 и As_2O_5 [9]. Отсюда следует, что окисленная компонента As не связана с наличием в АОП оксидов указанного типа, а, скорее всего, является следствием, как и в случае с In, образования оксифторида мышьяка $As_vO_vF_z$.

Рис. 5. Пики $As3p_{1/2}$, $As3p_{3/2}$ и $As3p_{5/2}$ в трех точках, соответствующих 22, 30 и 39 минутам травления.

Выводы

Методом РФЭС исследовано распределение элементного и химического состава по толщине АОП на арсениде индия, созданных анодным окислением в гальваностатическом режиме при двух значениях плотности тока в электролите, содержащем ионы фтора. Полученные данные свидетельствуют о том, что АОП состоят из оксифторидов In и As, а также оксида индия In_2O_3 . При этом фтор накапливается вблизи границы InAs–АОП.

Увеличение плотности тока от 0.05 до 0.5 мА/см² при одном и том же значении конечного напряжения и составе электролита приводит к увеличению концентрации фтора вблизи границы раздела InAs-АОП в примерно 3 раза. В свою очередь, увеличение конечного напряжения при фиксированном значении плотности тока также, но в меньшей степени, приводит к увеличению концентрации фтора вблизи границы раздела InAs–AOII: с увеличением конечного напряжения на 5 В содержание фтора в объеме АОII увеличивается в ~ 1.2 и ~ 1.5 раза при плотности тока 0.05 и 0.5 мА/см², соответственно.

Список литературы:

1. Астахов В.П., Данилов Ю.А., Дудкин В.Ф., Лесников В.П., Сидорова Г.Ю., Суслов Л.А., Таубкин И.И., Эскин Ю.М. // Письма в ЖТФ. 1992. Т. 18. №. 3. С. 1–5.

Давыдов В.Н., Лоскутова Е.А., Фефелова И.И.
// Микроэлектроника. 1986. Т. 15. № 5. С. 455–459.

3. Валишева Н.А., Гузев А.А., Ковчавцев А.П., Курышев Г.Л., Левцова Т.А., Панова З.В. // Микроэлектроника. 2009. Т. 38. № 2. С. 99–106.

4. Валишева Н.А., Терещенко О.Е., Просвирин И.П., Калинкин А.В., Голяшов В.А., Левцова Т.А., Бухтияров В.И. // Физика и техника полупроводников. 2011. Т. 46. № 4. С. 569–575.

5. Valisheva N.A., Tereshchenko O.E., Prosvirin I.P., Levtsova T.A., Rodjakina E.E., Kovchavcev A.V. // Appl. Surface Sci. 2010. P. 5722–5726.

6. Urch D.S., Urch M.J.S. ESCA (Mg) – Auger table. London: Chemistry department, Queen Mary College, University of London, 1981. 52 p.

7. Jewett S., Zemlyanov D., Ivanisevic A. // Langmuir. 2011. № 27. P. 3774–3782.

8. Seah M.P., Dench W.A. // Surface & Interface Analysis. 1979. V. 1. № 1. P. 1–11.

9. Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D. Handbook of X-ray photoelectron spectroscopy. Eden Prairie, MN: Physical Electronics, Inc., 1995. 95 p.

References:

1. Astakhov V.P., Danilov Y.A., Dudkin V.F., Lesnikov V.P., Sidorova G.Yu., Suslov L.A., Taubkin I.I., Eskin Yu.M. // Technical Physics Letters. 1992. V. 18. №. 3. P. 1–5.

2. Davydov V.N., Loskutova E.A., Fefelova I.I. // Microelectronics. 1986. V. 15. № 5. P. 455–459.

3. Valisheva N.A., Guzev A.A., Kovchavcev A.P., Kuryshev G.L., Levtsova T.A., Panova Z.V. // Microelectronics. 2009. V. 38. № 2. P. 99–106.

4. Valisheva N.A., Tereshchenko O.E., Prosvirin I.P., Kalinkin A.V., Golyashov V.A., Levtsova T.A., Bukhtiyarov V.I. // PTS. 2011. V. 46. № 4. P. 569–575.

5. Valisheva N.A., Tereshchenko O.E., Prosvirin I.P., Levtsova T.A., Rodjakina E.E., Kovchavcev A.V. // Appl. Surface Sci. 2010. P. 5722–5726.

6. Urch D.S., Urch M.J.S. ESCA (Mg) – Auger table. London: Chemistry department, Queen Mary College, University of London, 1981. 52 p.

7. Jewett. S., Zemlyanov D., Ivanisevic A. // Langmuir. 2011. № 27. P. 3774–3782.

8. Seah M.P., Dench W.A. // Surface & Interface Analysis. 1979. V. 1. № 1. P. 1–11.

9. Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D. Handbook of X-ray photoelectron spectroscopy. Eden Prairie, MN: Physical Electronics, Inc., 1995. 95 p.