Preview

Fine Chemical Technologies

Advanced search

Review of contemporary ethylbenzene production technologies

https://doi.org/10.32362/2410-6593-2025-20-5-497-515

EDN: WUQZIC

Abstract

Objectives. Ethylbenzene is an important intermediate for styrene production. Most of the ethylbenzene synthesized worldwide is used to produce styrene, with smaller amounts used as a solvent or for the production of other chemicals. This article reviews contemporary technologies for the production of ethylbenzene.

 Results. The liquid-phase method of ethylbenzene production using zeolite-containing catalysts for alkylation and transalkylation exhibits the highest efficiency and simplicity. In comparison with liquid-phase alkylation catalysts, e.g., aluminum chloride, zeolitecontaining catalysts demonstrate high activity, selectivity, stability, and resistance to impurities. In addition, they are non-corrosive, environmentally friendly, regenerable, and have a prolonged cycle length between regenerations. More than half of the ethylbenzene synthesized globally is produced by the Badger EBMax process using a catalyst based on zeolite of the MWW family (MCM-22). This technology enables a low benzene to ethylene ratio (from 2.5 to 4), which reduces the benzene circulation rate, increases efficiency, and reduces the column throughput for benzene extraction. The main part of contemporary research in the field of benzene alkylation with ethylene into ethylbenzene is associated with the creation and use of zeolite-containing catalysts, which are solid porous systems containing an active component and a binder. The active component is USY, beta, mordenite, ZSM-5, ZSM-11, ZSM-12, ZSM-23, ZSM-35, ZSM-48, MCM-22, and MCM-49 zeolites. Among the preferred alkylation catalysts are Beta zeolite or zeolite of the MCM-22 family. The binder is Al2O3, SiO2, or amorphous aluminosilicate. Current research also focuses on methods for creating zeolite materials with an increased mesoporous surface area by treating the initial zeolite precursor using various technologies, including combinations of acid treatment and surfactant treatment followed by alkaline solution treatment. Contemporary developments in the field of domestic alkylation and transalkylation catalysts for ethylbenzene production are presented.

Conclusions. The production of ethylbenzene and the further development of technologies for obtaining catalysts for its synthesis are highly promising and important directions in Russia. The technology of liquid-phase alkylation in the presence of contemporary highly active zeolite-containing catalysts offers significant advantages. 

About the Authors

L. A. Khakhin
United Research and Development Center
Russian Federation

Leonid A. Khakhin, Cand. Sci. (Eng.), Head of the Laboratory of Polyalphaolefins

55/1-2, Leninskii pr., Moscow, 119333



S. N. Potapova
United Research and Development Center
Russian Federation

Svetlana N. Potapova, Cand. Sci. (Chem.), Leading Researcher, Laboratory of Polyalphaolefins

55/1-2, Leninskii pr., Moscow, 119333



E. V. Korolev
United Research and Development Center
Russian Federation

Evgeniy V. Korolev, Cand. Sci. (Eng.), Senior Researcher, Laboratory of Polyalphaolefins

55/1-2, Leninskii pr., Moscow, 119333



S. M. Masoud
United Research and Development Center
Russian Federation

Salekh M. Masoud, Cand. Sci. (Chem.), Researcher, Laboratory of Polyalphaolefins

55/1-2, Leninskii pr., Moscow, 119333



D. V. Svetikov
United Research and Development Center
Russian Federation

Dmitry V. Svetikov, Senior Researcher, Laboratory of Polyalphaolefins

55/1-2, Leninskii pr., Moscow, 119333



References

1. Degnan Th.F.Jr., Smith C.M., Venkat Ch.R. Alkylation of aromatics with ethylene and propylene: recent developments in commercial processes. Appl. Cat. A: Gen. 2001;221(1-2): 283–294. http://doi.org/10.1016/S0926-860X(01)00807-9

2. Pavlov M.L., Basimova R.A., Alyabyev A.S. Alkylation of benzene with ethylene on a domestic zeolite-containing catalyst. Neftegazovoe delo = Oil and Gas Business. 2012;2:470–478 (in Russ.).

3. Ivashkina E.N., Koshkin S.A., Khlebnikova E.S. Modeling the operation of industrial ethylbenzene production plants. Neftegaz RU. 2019;9:82–87 (in Russ.).

4. Kosareva A.E., Kurakin M.E., Travkin M.E. Current state and prospective developments processes for obtaining ethylbenzene. Market overview and current state of processes obtaining ethylbenzene. Vestnik Molodogo Uchenogo USNTU. 2024;2:99–106 (in Russ.).

5. Popov S.V., Krymkin N.Yu., Khabibrakhmanova O.V., Papulovskikh E.N. Reconstruction of the hardware design for isopropylbenzene production for the production of ethylbenzene. Vestnik Voronezhskogo gosudarstvennogo universiteta inzhenernykh tekhnologii = Proceedings of the Voronezh State University of Engineering Technologies. 2021;83(2):184–190 (in Russ). https://doi.org/10.20914/2310-1202-2021-2-184-190

6. Pavlov M.L., Basimova R.A., Alyab’ev A.S., Khabibullin A.M., Glotov A.P., Zinnurov R.R. Ethylbenzene poduction at Gazprom Neftekhim Salavat. Neftepererabotka i neftekhimiya = Oil Refining and Petrochemistry. 2023;7-8:28–33 (in Russ.).

7. Pavlov M.L., Basimova R.A., Alyabyev A.S. Method for Obtaining Catalyst and Method for Alkylating Benzene with Ethylene Using It: RF Pat. 2755892C1 RU. Publ. 22.09.2021 (in Russ.).

8. Ponomareva O.A., Knyazeva E.E., Shkuropatov A.V., et al. Synthesis and catalytic properties of MWW structure zeolite in petrochemical processes. Pet. Chem. 2017;57(12): 1147–1150. https://doi.org/10.1134/S096554411706024X [Original Russian Text: Ponomareva O.A., Knyazeva E.E., ShkuropatovA.V., Ivanova I.I., Gerzeliev I.M., Khadzhiev S.N. Synthesis and catalytic properties of MWW structure zeolite in petrochemical processes. Neftekhimiya. 2017;57(6): 769–772 (in Russ.).]

9. Shavaleev D.A., Pavlov M.L., Basimova R.A., et al. Synthesis of modified catalyst for liquid phase alkylation of benzene with ethylene. Pet. Chem. 2020;60(9):1073–1079. https://doi.org/10.1134/S0965544120090182 [Original Russian Text: Shavaleev D.A., Pavlov M.L., Basimova R.A., Sadovnikov A.A., Sud’in V.V., Smirnova E.M., Demikhova N.R. Synthesis of modified catalyst for liquid phase alkylation of benzene with ethylene. Neftekhimiya. 2020;60(5):686–692 (in Russ.). https://doi.org/10.31857/S0028242120050184 ]

10. Pavlov M.L., Basimova R.A., Shavaleev D.A., et al. Development of a catalyst and a process for liquid-phase benzene alkylation with ethylene and ethane-ethylene hydrocarbon pyrolysis fraction. Pet. Chem. 2019;59(7): 701–705. https://doi.org/10.1134/S0965544119070120 [Original Russian Text: Pavlov M.L., Basimova R.A., Shavaleev D.A., Ershtein A.S. Development of a catalyst and a process for liquid-phase benzene alkylation with ethylene and ethaneethylene hydrocarbon pyrolysis fraction. Neftekhimiya. 2019;59(4): 417–422 (in Russ.). https://doi.org/10.1134/S0028242119040129 ]

11. Rogov M.N., Rakhimov Kh.Kh., Ishmiarov M.Kh., Myachin S.I. Method of Preparating Zeolite-Containing Benzene-Ethylene Alkylation Catalyst: RF Pat. 2265482 RU. Publ. 10.12.2005 (in Russ.).

12. Senderov E., Qureshi M.I. Introduction of Mesoporosity into Zeolite Materials with Sequential Acid, Surfactant, and Base Treatment: USA Pat. 9376324 US; Patent Publication Number 2013/0183231 А1. Publ. 18.07.2013.

13. Peters A.W., Knaeble W.J., Burton A.W., Johnson I.D., Oliveri C.G., Britto R.J. Production of Alkylaromatic Compounds: USA Pat. 11820723 US. Publ. 30.11.2023.

14. Khadzhiev S.N., Pavlov M.L., Basimova R.A., Gerzeliev I.M., Alyab’ev A.S., Kutepov B.I. Catalyst, Method for Production Thereof and Method for Transalkylation of Benzene with Diethylbenzenes using Said Catalyst: RF Pat. 2478429 C1 RU. Publ. 10.04.2013 (in Russ.).

15. Shavaleev D.A., Pavlov M.L., Basimova R.A., Shavaleeva N.N., Jershtejn A.S., Travkina O.S., Kutepov B.I. Method of Producting Catalyst and Method for Transalkylation of Benzene with Diethylbenzenes Using Same: RF Pat. 2553256 C1 RU. Publ. 10.06.2015 (in Russ.).

16. Woodle G.B., Cepla A. Ethylbenzene Process Using Stacked Reactor Loading of Beta and Y Zeolites: USA Pat. 5998687. Publ. 12.07.1999.

17. Lui G., Sundararaman R., Cao J. Ethylbenzene plant debottleneck with a high-activity transalkylation catalyst. Hydrocarbon Processing. 2021;6:51–54.

18. Pavlov M.L., Basimova R.A., Alyabyev A.S. Catalyst, Method for its Preparation and Method for Transalkylation of Benzene with Diethylbenzenes Using It: RF Pat. 2751336 C1. Publ. 13.07.2021 (in Russ.).

19. Degnan T.F., Smith C.M., Venkat C.R. Alkylation of aromatics with ethylene and propylene: recent developments in commercial processes. Appl. Catal. A: Gen. 2001;221(1-2): 283–294. https://doi.org/10.1016/S0926-860X(01)00807-9

20. Basimova R.A., Pavlov M.L., Prokopenko A.V., Mjachin S.I., KajumovV.V., MusinA.R., KozlovaM.Ju., KutepovB.I. The main stages of development and the current state of the ethylbenzene production process. Neftepererabotka i neftekhimiya = Oil Refining and Petrochemistry. 2009;2:24–28 (in Russ.).

21. Lee S. Encyclopedia of Chemical Processing. CRC Press; 2006. 3640 р.

22. Abrams M.L., Jeroro E., Moscoso J.G. Process for Making Modified Small-Crystal Mordenite, Transalkilation Process Using Same, and Modified Small-Crystal Mordenite: USA Pat. 11529615 B2. Publ. 20.12.2022.

23. Abrams M.L., Jeroro E., Moscoso J.G., Jan D.-Y., Cox P. Process for Making Modified Small-Crystal Mordenite, Transalkilation Process Using Same, and Modified Small-Crystal Mordenite. USA Pat. 2021/0187486 A1. Publ. 24.06.2021.

24. Jeroro E., Jan D-Y., Cox P., Moscoso J.G. USM-54 and Transalkylation Process Using Same: WO Pat. 2021/141870 A1. Publ. 15.07.2021.

25. Yang W., Wang Z., Sun H., Zhang B. Advances in development and industrial applications of ethylbenzene processes. Chinese J. Catal. 2016;37(1):16–26. https://doi.org/10.1016/S1872-2067(15)60965-2

26. Meyers R. Handbook of Petrochemicals Production Processes. 2nd Ed. McGraw Hill.; 2018. 640 p.

27. Weitkamp J., Pupple L. Catalysis and Zeolites: Fundamentals and Applications. Springer Science & Business Media; 1999. 564 p.

28. Girotti G., Cappeliazzo O. Catalytic Composition and Process for the Alkylation or Transalkylation of Aromatic Compounds: USA Pat. 6084143. Publ. 04.07.2000.


Review

For citations:


Khakhin L.A., Potapova S.N., Korolev E.V., Masoud S.M., Svetikov D.V. Review of contemporary ethylbenzene production technologies. Fine Chemical Technologies. 2025;20(5):497-515. https://doi.org/10.32362/2410-6593-2025-20-5-497-515. EDN: WUQZIC

Views: 10


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)