Preview

Fine Chemical Technologies

Advanced search

Projection of structure and compositions of resistance to burning polymer composite materials with flame retardants based on magnesium hydroxide

https://doi.org/10.32362/2410-6593-2023-18-2-109-122

Abstract

Objectives. To identify general principles for the design of dispersed-filled polymer composite materials (DFPCMs) with different generalized and reduced parameters, as well as types of disperse structure with high fire resistance; to develop an algorithm for the creation of non-combustible polymer composites with flame-retardant fillers.

Methods. Scanning electron microscopy and laser diffraction were used to assess the shape, size, and particle size distribution of flame retardants. According to the presented classification of DFPCMs by structural principle, standard bar samples were obtained to determine the oxygen index (OI) and the fire resistance category.

Results. For the MFS-2 (medium filled system) and HFS (high filled system) structure types, the maximum resistance to burning (category V-0) is achieved with a generalized parameter of ® ≤ 0.40 volume fractions; the OI value increases in 2 times (up to ~40%) in relation to the polymer matrix.

Conclusions. In order to obtain a flame retardant DFPCMs (OI = 40%, category V-0) based on ethylene vinyl acetate with OI = 20% and magnesium hydroxide (brucite), the amount of water vapor released during the decomposition of the flame-retardant filler should be at least ~250 mL/g with a coke residue ~32%. A developed algorithm for calculating compositions and generalized parameters for the creation of DFPCMs having a predetermined type of disperse structure and high resistance to burning is presented.

About the Authors

K. A. Brekhova
M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University
Russian Federation

Kristina A. Brekhova - Postgraduate Student, Department of Chemistry and Technology of Plastics and Polymer Composites Processing, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University.

86, Vernadskogo pr., Moscow, 119571


Competing Interests:

None



I. D. Simonov-Emel'yanov
M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University
Russian Federation

Igor D. Simonov-Emel'yanov - Dr. Sci. (Eng.), Professor, Head of the Department of Chemistry and Technology of Plastics and Polymer Composites Processing, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University.

86, Vernadskogo pr., Moscow, 119571

Scopus Author ID 6603181099


Competing Interests:

None



A. A. Pykhtin
M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University
Russian Federation

Alexander A. Pykhtin - Cand. Sci. (Eng.), Associate Professor, Department of Chemistry and Technology of Plastics and Polymer Composites Processing, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University.

86, Vernadskogo pr., Moscow, 119571


Competing Interests:

None



References

1. Kablov V.F., Novopoltseva O.M., Kochetkov V.G., Lapina A.G. The main ways and mechanisms to improve fire- and heat resistance of materials. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta (Izvestiya VolgGTU) = Izvestia VSTU. 2016;(4):46-60 (in Russ.).

2. Nacharkina A.V., Zelenina I.V., Valueva M.I., Barbotko S.L. Fire safety of high-temperature carbon fiber reinforced plastics for aviation purposes (review). Trudy VIAM = Proceedings of VIAM. 2022;(7):134-150 (in Russ.). https://doi.org/10.18577/2307-6046-2022-0-7-134-150

3. Barbotko S.L., Bochenkov M.M., Volnyi O.S., Korobeinichev O.P., Shmakov A.G. Evaluation of the effectiveness of the fire retardants, promising for the creation of new polymer composite materials intended for aviation techniques. Trudy VIAM = Proceedings of VIAM. 2021;2(96):20-29 (in Russ.). https://doi.org/10.18577/2307-6046-2021-0-2-20-29

4. Garashchenko A.N., Berlin A.A., Kulkov A.A. Methods and means for providing required fire-safety indices of polymer composite structures. Pozharovzryvobezopasnost = Fire and Explosion Safety. 2019;28(2):9-30 (in Russ.). https://doi.org/10.18322/PVB.2019.28.02.9-30

5. Buravov B.A., Bochkarev E.S., Al'-Khamzavi A., Tuzhikov O.O., Tuzhikov O.I. Modern trends in the development of antipyrene for polymer compositions. Composition, properties, application. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta (Izvestiya VolgGTU) = Izvestia VSTU. 2020;12(247):7-24 (in Russ.). https://doi.org/10.35211/1990-5297-2020-12-247-7-24

6. Chizhov M.A., Khairullin R.Z. Toxicity of combustion products of polymeric materials with the introduction of flame retardants into their composition. Vestnik Kazanskogo tekhnologicheskogo universiteta = Bulletin of the Kazan Technological University. 2014;17(9):144-145 (in Russ.).

7. Lomakin S.M., Zaikov G.E., Mikitaev A.K., Kochnev A.M., Stoyanov O.V., Shkodich V F., Naumov S.V. Flame retardants for polymers. Vestnik Kazanskogo tekhnologicheskogo universiteta = Bulletin of the Kazan Technological University. 2012;15(7):71-86 (in Russ.).

8. Agafonova A.I., Koval' E.O., Maier E.A. Low flammability polypropylene compositions. Izvestiya Tomskogo politekhnicheskogo universiteta = Bulletin of the Tomsk Polytechnic University. 2011;318(3):136-140 (in Russ.).

9. Al'meeva L.R., Tangatarov A.F. Chlorinated paraffins as flame retardants. Sovremennye tekhnologii obespecheniya grazhdanskoi oborony i likvidatsii posledstvii chrezvychainykh situatsii. 2015;1-1(6):50-53 (in Russ.).

10. Zaripov I.I., Vikhareva. I.N., Builova E.A., Berestova T.V., Mazitova A.K. Additives to reduce the flammability of polymers. Nanotekhnologii v stroitel'stve = Nanotechnologies in Construction. 2022;14(2):156-161 (in Russ.). https://doi.org/10.15828/2075-8545-2022-14-2-156-161

11. Fomin D.L., Mazina L.A., Deberdeev T.R., Akhmetchin E.S., Ulitin N.V. Fireproof properties of PVC compositions when using some bromine-containing flame retardants. Vestnik Kazanskogo tekhnologicheskogo universiteta = Bulletin of the Kazan Technological University. 2012;15(18):104-106 (in Russ.).

12. Hornsby P.R., Watson C.L. A study of the mechanism of flame retardance and smoke suppression in polymers filled with magnesium hydroxide. Polym. Degrad. Stab. 1990;30(1):73-87. https://doi.org/10.1016/0141-3910(90)90118-Q

13. Svatikov A.Yu., Simonov-Emelyanov I.D. The thermal stability of polymer cable compounds with a flame-retarding filler. Tonk. Khim. Tekhnol. = Fine Chem. Technol. 2018;13(6):35-41 (in Russ.). https://doi.org/10.32362/2410-6593-2018-13-6-35-41

14. Simonov-Emelyanov I.D. Classification of dispersion-filled polymer composite materials relative to lattice types and structural principle. Klei. Germetiki. Tekhnologii = Adhesives. Sealants. Technologies. 2020;(1):8-13 (in Russ.). https://doi.org/10.31044/1813-7008-2020-0-1-8-13

15. Konstantinova N.I., Simonov-Emelyanov I.D., Shebeko A.Yu, Krivoshapkina O.V., Smirnov N.V. The structure and inflammability of the polymer composite coatings for bulk floors. Plasticheskie Massy. 2019;(3-4):50-54 (in Russ.). https://doi.org/10.35164/0554-2901-2019-3-4-50-54

16. Simonov-Emelyanov I.D., Kharlamova K.I., Dergunova E.R. Oil absorption of dispersed fillers and determination of maximum fillers fraction in polymer composite materials. Klei. Germetiki. Tekhnologii = Adhesives. Sealants. Technologies. 2022;(3):18-24 (in Russ.). https://doi.org/10.31044/1813-7008-2022-0-3-18-24

17. Brekhova K.A., Simonov-Emelyanov I.D. FMagnesium hydroxide-based flame-retardant fillers for polymer materials and the effect of particle size on the dehydration process at high temperatures. Plasticheskie Massy. 2022;(7-8):44-47 (in Russ.). https://doi.org/10.35164/0554-2901-2022-7-8-44-47

18. Filina A.V., Komaristyi A.S. The use of electrical insulating materials in the manufacture of sheaths of cable products and wires. In: Problems and Prospects of Russia's Development: A Youth Look into the Future: Proceedings of the 2nd All-Russian Scientific Conference. Kursk: Universitetskaya kniga; 2019. Р. 205-208 (in Russ.).

19. Krechetov D.D., Kovaleva A.N., Simonov-Emelyanov I.D. Rheological properties of dispersion-filled thermoplastics with different types of structures at various processing temperatures. Plasticheskie Massy. 2020;(9-10):19-22 (in Russ.). https://doi.org/10.35164/0554-2901-2020-9-10-19-22


Supplementary files

1. Structure of the particles of the EP 3.5 flame-retardant filler
Subject
Type Исследовательские инструменты
View (70KB)    
Indexing metadata ▾
  • Principles for the design of dispersed-filled polymer composite materials (DFPCMs) with different generalized and reduced parameters, as well as types of disperse structure with high fire resistance were identified.
  • An algorithm for the creation of non-combustible polymer composites with flame-retardant fillers was developed.
  • In order to obtain a flame retardant DFPCMs based on ethylene vinyl acetate with oxigen index 20% and magnesium hydroxide, the amount of water vapor released during the decomposition of the flame-retardant filler should be at least ~250 mL/g with a coke residue ~32%.

Review

For citations:


Brekhova K.A., Simonov-Emel'yanov I.D., Pykhtin A.A. Projection of structure and compositions of resistance to burning polymer composite materials with flame retardants based on magnesium hydroxide. Fine Chemical Technologies. 2023;18(2):109-122. https://doi.org/10.32362/2410-6593-2023-18-2-109-122

Views: 581


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)