УДК 541.49+546.121+547.496.3

СИНТЕЗ И СТРОЕНИЕ КОМПЛЕКСОВ ИОДИДОВ НЕОДИМА И ГАДОЛИНИЯ С ТИОКАРБАМИДОМ

Л.Ю. Аликберова, профессор, *Д.В. Альбов, научный сотрудник,

Т.А. Антоненко, студент, И.М. Кочетова, студент, Н.С. Рукк, доцент

кафедра Неорганической химии, МИТХТ им. М.В. Ломоносова

Химический факультет, МГУ им. М.В. Ломоносова

e-mail: alikberovalyu@mail.ru

ГП редставлены данные по синтезу, ИК спектроскопическому и рентгеноструктурному исследованию тиокарбамидных комплексов иодидов неодима и гадолиния состава [Nd(H₂O)₉]I₃·2CS(NH₂)₂ и [Gd(H₂O)₉]I₃·2CS(NH₂)₂. Показано, что в их кристаллической структуре присутствуют катионы нонааквалантаноидов (форма полиздра – одношапочная тетрагональная антипризма), внешне-сферные молекулы тиокарбамида и некоординированные иодид-ионы. Плоские молекулы тиокарбамида, объединенные между собой водородными связями, расположены взаимно перпендикулярно и образуют гофрированные слои, в полостях которых располагаются аквакатионы лантаноидов и иодид-ионы. Водородные связи образуются также между молекулами тиокарбамида и иодид-анионами и с аквакатионами.

Data concerning the synthesis, IR-spectra, and single crystal X-ray studies for neodymium iodide and gadolinium iodide – thiourea complexes of the general composition $[Ln(H_2O)_9]I_3 \cdot 2CS(NH_2)_2$ (Ln = Nd, Gd) are presented. It has been demonstrated that in the solid state the title compounds are composed from $[Ln(H_2O)_9]^{3^+}$ cations (polyhedron: monocapped tetragonal antiprism) as well as from non-coordinated thiourea are combined into goffered layers, nonaequacations of lanthanides and iodide-ions being located in the cavities between these layers. The existence of hydrogen bonding between the mentioned species has been underlined.

Ключевые слова: иодид неодима, иодид гадолиния, тиокарбамид, комплексы, кристаллическая структура, ИК-спектры, синтез.

Key words: neodymium(III) iodide, gadolinium(III) iodide, thiourea, complexes, crystal structure, IR spectra, synthesis.

Исследование взаимодействия солей редкоземельных элементов с серусодержащими амидными лигандами, в частности, с тиокарбамидом CS(NH₂)₂, вызывает большой интерес, поскольку позволяет выявить закономерности координации некислородных амидных лигандов и рассмотреть возможные пути термического разложения этих соединений с получением оксидных, сульфидных и оксосульфидных производных [1]. Особенно перспективны в этом отношении комплексы иодидов лантаноидов, поскольку для тиокарбамида характерно специфическое взаимодействие с иодом, который выделяется при нагревании соответствующих соединений на воздухе. Отметим, что тиокарбамид и его производные обладают физиологической активностью: они подавляют тиреоидные гормоны (гормоны щитовидной железы - тироксин и трииодтиронин). Таким образом, тиокарбамидные производные могут иметь практическое значение при разработке препаратов для лечения заболеваний, характеризующихся гиперфункцией щитовидной железы.

Ранее были выделены в кристаллическом состоянии соединения ацетатов, пропионатов, хлоридов, перхлоратов и иодидов некоторых лантаноидов с тиокарбамидом [2–7]. В частности, при изучении фазовых равновесий в системах $LnI_3 - CS(NH_2)_2 - H_2O$ (Ln – La, Gd, Er, Tb, Nd) при 0°C [5 – 7] установлено образование кристаллических инконгруэнтно раствори-

мых комплексных соединений состава $LnI_3 \cdot 2CS(NH_2)_2 \cdot 10H_2O$. На основании данных ИК спектроскопии высказано предположение, что в кристаллах комплексов содержатся аквакатионы состава $[Ln(H_2O)_9]^{3+}$, а молекулы тиокарбамида и дополнительные молекулы воды удерживаются во внешней сфере комплексов за счет водородных связей. Однако детальное исследование структуры данных комплексов не проводилось.

Настоящая работа посвящена синтезу тиокарбамидных производных иодидов неодима и гадолиния при комнатной температуре и установлению их строения методом рентгеноструктурного анализа.

Экспериментальная часть

Исходными веществами для синтеза комплексов служили нонагидраты иодидов неодима и гадолиния, синтезированные по известной методике [7] из карбонатов соответствующих лантаноидов и иодоводородной кислоты и тиокарбамид квалификации «осч 14 – 3» (ТУ 6-09-3975-75).

Синтез комплексных соединений проводили при комнатной температуре, смешивая $LnI_3 \cdot 9H_2O$ и $CS(NH_2)_2$ в молярном отношении 1:1.7 - 1:1.8. Для гомогенизации к каждой реакционной смеси добавляли по несколько капель воды до образования прозрачных растворов. После выдерживания на воздухе из растворов выделяются инконгруэнтно растворимые в воде призматические кристаллы светложелтого цвета в случае Gd и светло-розового цвета в случае Nd. Выделение кристаллических комплексов наблюдается только в условиях 10 – 15%-ного (мол.) избытка LnI₃ по сравнению со стехиометрическим количеством [5, 6].

Полученные кристаллы анализировали на содержание лантаноида титрованием с трилоном Б [5]; содержание тиокарбамида определяли методом обратного иодометрического титрования. Относительная ошибка определения в обоих случаях не превышала $\pm 0.2\%$.

ИК спектры поглощения новых комплексных соединений записывали на ИК спектрометре ΦT –02 «Инфралюм» в интервале 400 – 3800 см⁻¹. Препараты для съемки готовили в

виде суспензий в вазелиновом масле.

Экспериментальные интенсивности дифракционных отражений получали при комнатной температуре на дифрактометре CAD-4 [8] (AgK_{α} или МоK_{α}-излучение, графитовый монохроматор, ω -сканирование). Параметры элементарной ячейки определяли и уточняли по 25 рефлексам в интервале углов θ 14–15° (для производного гадолиния) и θ 11–12° (для производного неодима).

Результаты и их обсуждение

Согласно данным химического анализа (табл. 1), в полученных соединениях на 1 моль иодида лантаноида приходится 2 моль тиокарбамида.

Габлица 1. Результаты химического анализа	$[Nd(H_2O)_9]I_3 \cdot 2CS(NH_2)_2$	2 (I) и [Gd(H ₂ O) ₉]I ₃ ·2CS(NH ₂) ₂ (II	.).
---	-------------------------------------	--	-----

I р. Вычислено, масс. %		Найдено, ма	cc. %	Молярное отношение LnI ₃ :	
LII	Ln	$CS(NH_2)_2$	Ln	$CS(NH_2)_2$	$CS(NH_2)_2$
Nd	17.19	18.12	17.1	18.1	1:2.00
Gd	18.45	17.86	18.3	17.8	1:2.01

Результаты расчета штрихдиаграмм для указанных соединений показали, что они существенно отличаются от полученных ранее для комплексов LnI₃·2CS(NH₂)₂·10H₂O (Ln – La, Gd, Er, Tb, Nd). Очевидно, различно и строение описанных в литературе [5, 6] и полученных нами комплексов.

Частоты максимумов основных полос поглощения в ИК спектрах тиокарбамидных комплексов I и II представлены в табл. 2. В отличие от ранее изученных $LnI_3 \cdot 2CS(NH_2)_2 \cdot 10H_2O$ [5– 7], в ИК спектрах I и II наблюдается некоторое смещение полос поглощения валентных колебаний C–S в сторону более низких частот, что указывает на участие молекул тиокарбамида в образовании водородных связей.

Полученные комплексы исследованы методом рентгеноструктурного анализа.

Таблица 2. Частоты максимумов основных полос поглощения ((cm_]	l) в Иł	К спектрах	тиокарбам	ида и
комплексных соединений [Nd(H ₂ O) ₉]I ₃ ·2CS(NH	$(H_2)_2$	(I) и [C	$Gd(H_2O)_9]I_3$	$\cdot 2CS(NH_2)$	2 (II) .

$CS(NH_2)_2$	Ι	II	Отнесение полос
488	465	491	δ(NCN)
632			v(CS)
730	717	716	v(CS)
1084	1035	1034	
	1089	1091	V(CN)
1414	1378	1398	v(CN) + S(HOH)
	1445	1464	V(CN) + O(HOH)
1473	1466	1485	v(CN)
1618	1611	1610	$\delta(NH_2)$
3175	2161	2200	
3277	2268	3200	v(NH) + v(OH)
3380	3308	5400	

Основные параметры эксперимента и кристаллографические характеристики соединений приведены в табл. 3. Поправка на поглощение сделана методом ψ -сканирования отдельных рефлексов. Первичную обработку массива экспериментальных данных проводили по комплексу программ WinGX [9].

Все последующие расчеты выполняли в рамках комплекса программ SHELX97 [10]. Кристаллическую структуру определяли прямыми методами с последующим уточнением

позиционных и тепловых параметров в анизотропном приближении для всех неводородных атомов. Атомы водорода вводили в вычисленные позиции и уточняли в изотропном приближении. Координаты атомов и другие параметры кристаллической структуры соединений $[Ln(H_2O)_9]I_3 \cdot 2CS(NH_2)_2$ (Ln = Nd, Gd) депонированы в Кембриджском банке структурных данных: CCDC 756954 (I), 756953 (II) (http://www.ccdc.cam.ac.uk; e-mail: data_request@ ccdc.cam.ac.uk).

Вестник МИТХТ, 2010, т. 5, № 3

	<u> </u>	II	
Эмпирическая формула	C ₂ H ₂₆ I ₃ N ₄ Nd O ₉ S ₂	C ₂ H ₂₆ Gd I ₃ N ₄ O ₉ S ₂	
Молекулярная масса	839.33	852.21	
Сингония	Моноклинная	Моноклинная	
Пространственная группа	<i>C 2/c</i>	<i>C 2/c</i>	
<i>a</i> , Å	24.864(5)	24.801(10)	
b, Å	8.424(3)	8.3830(19)	
<i>c</i> , Å	14.114(4)	14.079(8)	
<i>β</i> , град.	124.58(3)	124.56(3)	
<i>V</i> , Å ³	2433.9(12)	2411(2)	
Т, К	293(2)	293(2)	
Z	4	4	
$ρ_{\rm BMY.}$, γ/cm ³	2.291	2.298	
Излучение	MoK _α	AgK_{lpha}	
$\mu(K_{\alpha}), { m Mm}^{-1}$	3.252	6.750	
Область углов θ , град.	1.5-20	2-26	
	$-28 \le h \le 30;$	$-30 \le h \le 9$	
Интервал индексов	$-10 \le k \le 9$	$-9 \le k \le 10$	
	$-13 \le l \le 17$	$-14 \le l \le 17$	
Размеры кристалла, мм	0.2 x 0.2 x 0.2	0.3 x 0.3 x 0.3	
Объем эксперимента	4427	4752	
Всего отражений	2302	2361	
Независимых отражений	2011	2179	
Число уточняемых параметров	98	99	
GooF	1.087	1.099	
<i>R</i> -фактор <i>R1/wR2[I≥2σ(I)]</i>	0.0439/0.0375	0.0406/0.0374	
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}, 3 / \text{Å}^3$	1.477 / -1.306	2.383 / -1.625	

Таблица 3. Кристаллографические характеристики, детали рентгендифракционного эксперимента и уточнения структуры соединений [Nd(H₂O)₉]I₃·2CS(NH₂)₂ (I) и [Gd(H₂O)₉]I₃·2CS(NH₂)₂ (II).

Рис. 1. Молекулярная структура соединения [Nd(H₂O)₉]I₃·2CS(NH₂)₂ (I). Значения некоторых длин связей *d*,Å: Nd(1)–O(1) = 2.497(5); Nd(1)–O(2) = 2.490(4); Nd(1)–O(3) = 2.482(4); Nd(1)–O(4) = 2.490(4); Nd(1)–O(5) = 2.478(4); S(1) –C(1) = 1.704(8); N(1)– C(1) = 1.247(10); N(2)–C(1) = 1.293(11) Å. Отдельные валентные углы ω (град.) в структуре I: N(1)–C(1)–N(2) = 116.4(8); N(1)–C(1)–S(1) = 121.8(6); N(2)–C(1)–S(1) = 121.8(6).

Рентгеноструктурное исследование тиокарбамидных комплексов иодидов неодима и гадолиния показало присутствие в кристаллах аквакатионов (форма полиэдра – одношапочная тетрагональная антипризма), внешнесферных молекул тиокарбамида и некоординированных иодидионов. Молекулярная структура комплексов, полученная с использованием программы MERCURY CSD 1.5 [12], показана на рис. 1 ([Gd(H₂O)₉]I₃·2CS(NH₂)₂) и 2 ([Nd(H₂O)₉]I₃·2CS(NH₂)₂).

Рис. 2. Молекулярная структура соединения [Gd(H₂O)₉]I₃·2CS(NH₂)₂ (II). Значения некоторых длин связей *d*,Å: Gd(1)–O(1) = 2.457(4); Gd(1)–O(2) = 2.444(4); Gd(1)–O(3) = 2.449(4); Gd(1)–O(4) = 2.428(5); Gd(1)–O(5) = 2.467(5); S(1) –C(1) = 1.679(9); N(1)– C(1) = 1.290(11); N(2)–C(1) = 1.273(11) Å. Отдельные валентные углы ω (град.) в структуре II: N(1)–C(1)–N(2) = 112.0(9); N(1)–C(1)–S(1) = 124.3(7); N(2)–C(1)–S(1) = 123.7(6).

Плоские молекулы тиокарбамида, объединенные с иодид-ионами водородными связями (2.890 – 3.003 Å), расположены взаимно пер-

Вестник МИТХТ, 2010, т. 5, № 3

пендикулярно; при этом они обращены друг к другу амидными группами (на рис. 3 в качестве примера приведена кристаллическая структура соединения неодима). Соседние, параллельно расположенные молекулы тиокарбамида сближены примерно до 4.135 Å. В отличие от кристаллических ацетатных комплексов лантана и самария с тиокарбамидом [2, 3] атомы серы обращены в сторону акваиона лантаноида.

Рис. 3. Упаковка в кристаллах соединения I: вид вдоль оси *b*.

Сами молекулы тиокарбамида, входящие в кристаллы, подвергаются искажению. В частности, связь С–S несколько укорачивается по сравнению с исходным тиокарбамидом, где ее длина составляет 1.71 Å (рис. 1 и 2). Связи С–N также становятся несимметричными и более короткими: 1.246 и 1.294 (I), 1.272 и 1.290 (II)

вместо одинаковых длин в CS(NH₂)₂, равных 1.33 Å. Валентный угол N–C–N в «связанных» молекулах тиокарбамида несколько отличается от соответствующего угла для свободного CS(NH₂)₂, где он равен 115.6°. Эти результаты согласуются с данными ИК спектров полученных комплексов.

Молекулы тиокарбамида, как видно из рис. 3, образуют колонки, в полостях которых располагаются аквакатионы гадолиния и иодид-ионы.

Заключение

Установлено, что при комнатной температукристаллизуются соединения несколько иного состава, чем при 0°С (они содержат не 10, а 9 молекул воды). Отметим, что во внутренней координационной сфере аквакомплекса лантаноида находится, как правило, девять молекул воды. Наличие десяти молекул воды в соединениях, образующихся при 0°С [5-7], может быть связано с вхождением дополнительной молекулы в полость кристаллической решетки либо формированием необычного катиона декааквалантаноида. Возможно, это обусловлено особой структурой жидкой фазы при 0°С, характеризующейся наличием большего количества водородных связей. Кроме того, в силу высокой растворимости исходных иодидов лантаноидов (вблизи границы полной гидратации) практически весь растворитель удерживается в составе гидратных оболочек катионов лантаноидов, иодид-анионов и молекул тиокарбамида. При кристаллизации комплексов в условиях низкой температуры вероятен захват дополнительной молекулы воды, чего не происходит при комнатной температуре.

ЛИТЕРАТУРА:

1. Новожилов, А. Л. Особенности разложения тиомочевинны и кинетика процессов синтеза сульфида кадмия в низкотемпературных расплавах / А. Л. Новожилов, В. П. Тимченко // Сб. научных трудов СтГТУ. Сер. Физико-химическая. – 1999. – Вып. 2. – С. 68–77.

2. Кристаллическая структура монотиокарбамида (моноакватриацетато)самария(III) [Sm(C₂H₃O₂)₃(H₂O)] · SC(NH₂)₂ / Г. В. Романенко [и др.] // Журн. структ. химии. – 1981. – Т. 22, № 5. – С. 120–123.

3. Кристаллоструктурное исследование комплексных соединений ацетатов и пропионатов РЗЭ с мочевиной и тиомочевинной. Кристаллическая структура комплекса диакватриацетата лантана с тиомочевинной [La(C₂H₃O₂)₃(H₂O)₂] · SC(NH₂)₂ / Г. В. Романенко [и др.] // Журн. структ. химии. – 1980. – Т. 21, № 3. – С. 120–126.

4. Осипова, Т. А. Кристаллохимическое исследование тиокарбамидных комплексов перхлоратов РЗЭ иттриевой группы / Т. А. Осипова, Л. Н. Сальникова // Физикохимическое исследование равновесий в растворах : межвуз. сб. науч. тр. – Ярославль. – 1983. – № 202. – С. 66–68.

5. Взаимодействие иодидов неодима и тербия с тиокарбамидом при 0°С в водной среде. / Л. Ю. Аликберова [и др.] // Журн. неорган. химии. – 1988. – Т. 33, № 3. – С. 777–779.

6. Взаимодействие иодидов лантана, гадолиния и эрбия с тиокарбамидом при 0° С в водной среде. / Л. Ю. Аликберова [и др.] // Журн. неорган. химии. – 1992. – Т. 37, № 8. – С. 1911–1913.

7. Studies on the interaction of neodymium and terbium iodides with thiocarbamide / N. Tang, L. Yu. Alikberova, G. P. Loginova, B. D. Stepin, M. Y. Tan // Books of Abstr. XXV Intern. Conf. on Coordination Chemistry, Nanjing, China. – Nanjing. – 1987. – P. 586.

8. Enraf-Nonius CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands, 1989.

9. Farrugia, L. J. WinGX. X-Ray Crystallographic Programs for Windows / L. J. Farrugia // J. Appl. Cryst. – 1999. – Vol. 32. – P. 837.

10. Sheldrick G.M. SHELXS97 and SHELXL97. - University of Göttingen. Germany. - 1997.

11. MERCURY CSD 1.5. Cambridge Crystallographic Data Centre. http://www.ccdc.cam.ac.uk.