УДК 621.56

ТЕРМОДИНАМИЧЕСКИЙ МЕТОД РАСЧЕТА ТЕПЛОТЫ ПАРООБРАЗОВАНИЯ БИНАРНЫХ СМЕСЕЙ

Б.А. Арутюнов, профессор, Юсуф Ахмед Эльсадиг Мохаммед, аспирант кафедра Процессы и аппараты химической технологии им. Н.И. Гельперина МИТХТ им. М.В. Ломоносова e-mail: arutiunov33@mail.ru

в статье приводятся результаты расчета теплоты бинарных смесей на основе разработанного термодинамического анализа процесса перехода жидкость-пар. In article results and calculations of heat of binary mixes on the basis of the developed thermodynamic analysis of process of transition a liquid- vapor are presented.

Ключевые слова: теплота парообразования, термодинамический метод, бинарные смеси. **Key words:** heat of steam formation, thermodynamic method, binary mixtures.

Существующие методы расчета теплоты парообразования смеси различных веществ, предусматривающие знания огромного количества дополнительной информации о свойствах компонентов смеси, отличаются большой сложностью [1, 2].

В настоящей работе предлагается простой термодинамический метод, позволяющий определить теплоту парообразования смеси при ограниченном количестве информации об индивидуальных свойствах компонентов.

Имеется двухкомпонентная смесь. Исследование проводится с помощью H-T диаграммы по двум схемам расчета, схема теплоты парообразования по упрощенной методике представлена на рис. 1.

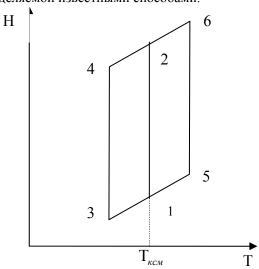


Рис. 1. Процесс парообразования двухкомпоненетой смеси при T=const.

Пусть при $T_{\kappa_{CM}}$ в процессе подвода теплоты в количестве $r_{\scriptscriptstyle{CM}}$ (теплота парообразования смеси)

смесь переходит в парообразное состояние, т.е. предполагается, что переход насыщенной жидкости в сухой пар смеси происходит при $T_{\delta\delta\delta}$ =const и x=const.

В реальных процессах парообразования при T=const концентрации компонентов изменяются, и этот процесс считается неравновесным. Но процесс парообразования при T=const и x=const можно осуществить регулированием давления в системе.

Рассмотрим состояния компонентов смеси в точках начала и конца кипения. В состоянии 1 НКК является перегретой жидкостью относительно равновесной температуры кипения $T_{s1} < T_{kcm}$ при давлении р (T_{s1} — температура кипения НКК). Второй компонент в точке 1 является недогретой жидкостью, так как $T_{kcm} < T_{s2}$ (T_{s2} — температура кипения ВКК). В состоянии 2 НКК представляет собой перегретый пар $T_{s1} < T_{kcm}$, а ВКК является переохлажденным паром, так как $T_{kcm} < T_{s2}$. В силу того, что в процессе парообразования при T=const теплота парообразования $r_{cm} = \Delta H_{1-2}$, то она не должна зависеть от того каким путем осуществляется процесс перехода жидкости в пар.

Это означает, что переход из состояния 1 в состояние 2 можно осуществить раздельно для каждого компонента процессами 1-3-4-2 и 1-5-6-2. Процесс 1-3-4-2 соответствует процессу перехода НКК из состояния 1 в 2, а 1-5-6-2 соответствует процессу перехода ВКК из состояния 1 в 2. Тогда теплоту парообразования смеси можно определить как сумму изменений энтальпии каждого компонента при переходе из состояния 1 в 2 с учетом их концентраций.

$$\Delta H_{1-2c_M} = x \Delta H_{1342}^{HKK} + (1-x) \Delta H_{1562}^{BKK}. \tag{1}$$

Остается теперь определить правую часть уравнения (1). Здесь необходимо сделать следующие допущения: будем считать, что при смещении сухих паров НКК и ВКК тепловые эффекты смещения отсутствуют, что в прин-

ципе соответствует реальности; энтальпия пара компонентов смеси не зависит от давлений.

С учетом выдвинутых предложений необходимо преобразовать уравнение (1). В результате можно записать, что

$$\Delta H_{cM} = x \left(H_2^{HKK} - H_1^{HKK} \right) + \left(H_2^{BKK} - H_1^{BKK} \right) (1 - x).$$
 (2)

Ho

$$x(H_2^{HKK} - H_1^{HKK}) = xC_{pHKK}^{\infty} (T_{s1}^{HKK} - T_{cM}) + xr^{HKK} + C_{pHKK}^{n} (T_{cM} - T_{s1}^{HKK}),$$
 (3)

a

$$(1-x)\left(H_{2}^{BKK}-H_{1}^{BKK}\right) =$$

$$= (1-x)C_{pBKK}^{\mathcal{M}}\left(T_{s2}^{BKK}-T_{cM}\right) + (1-x)r^{BKK} +$$

$$+ (1-x)C_{pBKK}^{n}\left(T_{cM}-T_{s2}^{BKK}\right).$$
(4)

Температура кипения смеси определялась по уравнению:

$$T_{KCM} = \sum_{i=1}^{n} \Phi_{i} T_{Si}$$
 (5)

$$\Phi_i = \frac{y_i \sqrt{ki}}{\sum_{i=1}^{n} y_i \sqrt{ki}} \,. \tag{5a}$$

Заменив в уравнении (2) первый и второй члены правой части на (3) и (4), получим:

$$\Delta H_{cM} = xr_1 + (1-x)r_2 - xC_{pHKK}^{\mathcal{H}} (T_{\kappa cM} - T_{s1}^{HKK}) + + xC_{pHKK}^{n} (T_{\kappa cM} - T_{s2}^{BKK}) + (1-x)C_{pBKK}^{\mathcal{H}} (T_{s2}^{BKK} - T_{\kappa cM}) - (6) - (1-x)C_{pHKK}^{n} (T_{s1}^{HKK} - T_{\kappa cM}).$$

Или

$$\Delta H_{cm} = xr_1 + (1-x)r_2 - x\Delta C_{p1} (T_{\kappa cm} - T_{s1}^{HKK}) + + (1-x)C_{p2} (T_{s2}^{BKK} - T_{\kappa cm})$$
(7)

где $\Delta C_{p1} = C_{pHKK}^{\mathcal{H}} - C_{pHKK}^{n}$ — разность средних теплоемкостей жидкости и пара НКК в интервале температур $\mathbf{T}_{\kappa c m} \div \mathbf{T}_{s1}^{\mathrm{HKK}}$, $\Delta C_{p2} = C_{pBKK}^{\mathcal{H}} - C_{pBKK}^{n}$ — разность средних теплоемкостей жидкости и пара ВКК в интервале температур $\mathbf{T}_{\kappa c m} \div \mathbf{T}_{s2}^{\mathrm{BKK}}$.

Полученный результат позволяет рассчитать теплоту парообразования смеси по известным значениям теплоемкостей и теплот парообразования компонентов [3–5]. По уравнению (7) были определены теплоты парообразования различных смесей: около 50. Результаты расчета для некоторых смесей представлены в табл. 1-4. Результаты расчета по уравнению (7) были сопоставлены с расчетами по программе ПРО-2 для смесей различных углеводородов: насыщенных, изомеров, ненасыщенных, циклических соединений, спиртов. Сопоставление показало, что наблюдается хорошее совпадение результатов, полученных по уравнению (7) с расчетами по ПРО-2. Откло-

Таблица. 1 Сопоставление расчетных значений $r_{c,m}$ пентан — октан, полученных с использо-ванием уравнения (7) и программы UNIFAC в зависимости от концентрации компонентов смеси при p=0.1 МПа.

X	$T_{\mathbf{c}}$	$\Delta H_{ m pacq}$	ΔH_{unifac}	σ, %
0	125.7	303.5	303.5	0
0.1	108.5	313.4	312.8	0.19182
0.2	96.6	319.8	319.1	0.21937
0.3	85.7	326.2	325.1	0.33836
0.4	75.2	332.6	331.2	0.42271
0.5	65.2	338.8	337.3	0.44471
0.6	56.4	344.4	342.9	0.43745
0.7	49.2	349.4	347.8	0.46003
0.8	43.6	352.9	351.8	0.31268
0.9	39.3	356	355	0.28169
1	36.5	357.4	357.4	0

Таблица. 2 Сопоставление расчетных значений $r_{\scriptscriptstyle CM}$ валериановый альдегид — толуол, полученных с использованием уравнения (7) и программы UNIFAC в зависимости от концентрации компонентов смеси при р=0.1 МПа.

X	$T_{\mathfrak{c}}$	$\Delta \mathbf{H}_{\mathbf{pacy}}$	ΔH_{unifac}	σ, ٪
0	110.6	363.6	363.6	0
0.1	110	366.7	366.5	0.05457
0.2	108.4	370.5	370.2	0.081037
0.3	107.7	373.8	373.3	0.133941
0.4	107	377	376.5	0.132802
0.5	106.3	380.3	379.8	0.131648
0.6	104.9	384.1	383.6	0.130344
0.7	104.3	387.3	386.8	0.129266
0.8	104.4	390	389.7	0.076982
0.9	103.2	393.7	393.5	0.050826
1	102.5	397	397	0

Таблица 3. Сопоставление расчетных значений r_{cm} пропиловый спирт — бутиловый спирт. полученных с использованием уравнения (7) и программы UNIFAC в зависимости от концентрации компонентов смеси при p=0.1 МПа.

X	T_{c}	$\Delta \mathbf{H}_{\mathbf{pacy}}$	ΔH_{unifac}	σ,%
0	117.6	583.2	583.2	0
0.1	115	595.2	593.4	0.3033
0.2	112.5	606.5	603.8	0.4471
0.3	110	618.9	615.1	0.6177
0.4	107.5	631.7	627.3	0.7014
0.5	105	645.1	640.7	0.6867
0.6	102.5	659.6	655.5	0.6254
0.7	100	674.9	672.1	0.4166
0.8	97	693.3	693.3	0
0.9	117.6	583.2	583.2	0
1	115	595.2	593.4	0.3033

нение составило около 1.0%. Сопоставление результатов с другими программами значительно хуже, иногда превышало 10%. Это связано с тем, что исходные данные по r компонентов в этих программах отличались от наших и $\Pi PO-2$.

Таблица 4. Сопоставление расчетных значений r_{cm} пенетен-1 – гексан. полученных с использованием уравнения (7) и программы UNIFAC в зависимости от концентрации компонентов смеси при p=0.1 МПа.

X	T_c	$\Delta H_{ m pacq}$	ΔH_{unifac}	σ, ٪
0	68.7	334.1	334.1	0
0.1	65.5	336.1	335.9	0.0595
0.2	62.1	338.4	338.1	0.0887
0.3	58.7	340.7	340.3	0.1175
0.4	55.0	343.1	342.7	0.1167
0.5	51.3	345.7	345.3	0.1158
0.6	47.4	348.4	348.1	0.0862
0.7	43.3	351.4	351.1	0.0854
0.8	39.1	354.4	354.3	0.0282
0.9	34.6	358.0	357.9	0.0279
1	30	361.5	361.5	0

Вторая схема расчета теплоты парообразования является более строгой с точки зрения процесса фазового перехода двухкомпонентных смесей. В этом случае необходимо учесть, что при постоянном давлении и x=const процесс парообразования зеотропных смесей происходит в некотором интервале температур $T_1 \div T_2$ согласно диаграмме равновесия T(x,y).

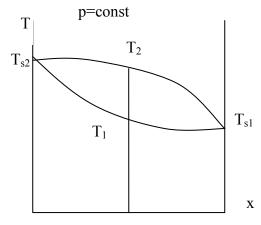


Рис. 2. Процесс парообразования двухкомпоненетой смеси при p=const.

Здесь также выдвигается допущение о равенстве нулю теплоты смешения паров компонентов. Тогда методику расчета теплоты парообразования для рассматриваемого случая перехода жидкой смеси в пар можно построить на следующей схеме, представленной в Н-Т диаграмме на рис. 3.

Теплота парообразования ΔH_{12} исследуемой смеси в процессе 1-2, согласно схеме на рис. 3, можно определить как сумму изменений

энтальпий каждого компонента в отдельности с учетом их концентраций: для НКК изменение энтальпии в процессе 1432, а для ВКК – в процессе 1562. Исследуем, в каком состоянии находятся НКК и ВКК в точках 1 и 2. В состоянии 1 НКК является перегретой жидкостью, так как $T_{s1} < T_1$, а в состоянии 2 он является перегретым паром, так как $T_{s1} < T_2$. Что касается ВКК, то он в состоянии 1 является недогретой жидкостью относительно равновесной температуры T_{s1} , так как $T_{s2} > T_1$, а в состоянии 2 пар ВКК является переохлажденным относительно T_{s2} . Процессы 4-3 и 5-6 — это процессы парообразования чистых компонентов.

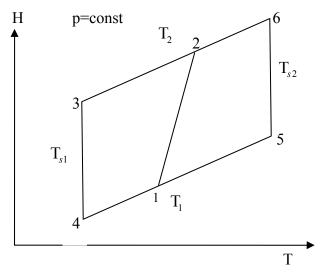


Рис. 3. Процесс парообразования двухкомпоненетой смеси при p=const.

Тогда определение теплоты парообразования в процессе 1-2 может быть заменено согласно схеме:

$$\Delta H_{cM} = x \overline{C}_{p1}^{\mathcal{M}} (T_{s1} - T_1) + x r_1 + x \overline{C}_{p1}^{n} (T_2 - T_{s1}) + + (1 - x) \overline{C}_{p2}^{\mathcal{M}} (T_{s2} - T_1) + (1 - x) r_2 + + (1 - x) \overline{C}_{p2}^{n} (T_2 - T_{s2})$$
(8)

Расчеты теплоты парообразования по уравнению (8) приводятся в табл. 5-8. Там же для сравнения приводятся расчетные данные, полученные по формуле (7) и рассчитанные по программам ПРО-2. Как видно из таблиц расхождения в $\Delta H_{\tilde{n}i}$, определенному по уравнению (8) и по уравнению (7), а так же по программа ПРО-2 не более 1%.

Сопоставление расчетных значений $\Delta H_{\tilde{n}\tilde{i}}$ по первой и второй схеме показали высокую сходимость результатов – погрешность не более 1%.

В заключении можно констатировать, что разработан простой термодинамический метод расчета $\Delta H_{\scriptscriptstyle CM}$ для двухкомпонентных смесей, состоящих из алкановых, алкеновых циклических углеводородов, спиртов.

Таблица 5. Сопоставление расчетных значений r_{cM} пентан — октан, полученных с использованием уравнения (8) и программы UNIFAC в зависимости от концентрации компонентов смеси при p=0.1 МПа.

X	T_1	T_2	ΔH_{pacy}	ΔH_{unifac}	σ, ٪
0		125.7	303.5	303.5	0.00
0.1	102	122	353.8	355.3	-0.42
0.2	85	118	385.7	388.1	-0.62
0.3	74	114	402.3	405.6	-0.82
0.4	64	110	417.6	420.4	-0.67
0.5	57	105	423.5	426.3	-0.66
0.6	52	98	421.6	424.1	-0.59
0.7	48	92	419.7	421.5	-0.43
0.8	42	82	416.3	417.5	-0.29
0.9	38	69	404.3	404.6	-0.07
1	36.5		357.4	357.4	0.00

Таблица 6. Сопоставление расчетных значений r_{cM} валериановый альдегид — толуол, полученных с использованием уравнения (8) и программы UNIFAC в зависимости от концентрации компонентов смеси при p=0.1 МПа.

Таблица 7. Сопоставление расчетных значений r_{cm} пропиловый спирт — бутиловый спирт, полученных с использованием уравнения (8) и программы UNIFAC в зависимости от концентрации компонентов смеси при p=0.1 МПа

X	T_1	T_2	$\Delta H_{ m pacy}$	ΔH_{unifac}	σ ٪
0		117.6	583.2	583.2	0.00
0.1	115.5	117	597.1	595.7	0.23
0.2	113	115.3	610.4	607.8	0.43
0.3	110.3	113	623.1	619.8	0.53
0.4	108.3	111.5	634.4	630.4	0.63
0.5	106	110	647.8	643.6	0.65
0.6	103.8	108	659.4	655.2	0.64
0.7	102.5	105.5	667	663.4	0.54
0.8	100.5	103.5	677.6	674.9	0.40
0.9	98.5	100.5	686.8	685.2	0.23
1	97		693.3	693.3	0.00

Таблица 8. Сопоставление расчетных значений r_{cM} 1-пентен — гексан, полученных с использованием уравнения (8) и программы UNIFAC в зависимости от концентрации компонентов смеси при p=0.1 МПа.

X	T_1	T_2	$\Delta H_{\text{расч}}$	ΔH_{unifac}	σ, ٪		X	T_1	T ₂	$\Delta H_{ m pacq}$	ΔH_{unifac}	σ, ٪
0		110.6	363.6	363.6	0.00		0		68.7	334.1	334.1	0.00
0.1	110.48	110.5	366.4	366.2	0.05		0.1	63	67	344.4	344.5	-0.03
0.2	110.05	110.1	369.5	369.1	0.11		0.2	57	64	353.1	353.5	-0.11
0.3	109.65	109.7	372.4	372	0.11		0.3	52	61.5	360.2	360.5	-0.08
0.4	109.35	109.4	375	375	0.00		0.4	48	58	363.3	363.8	-0.14
0.5	109	109.1	378.4	378	0.11		0.5	44	55	367.5	367.8	-0.08
0.6	108.65	108.7	380.8	380.9	-0.03		0.6	41	52	369.2	369.5	-0.08
0.7	108.45	108.5	384.3	383.8	0.13		0.7	37.5	47	369.5	369.7	-0.05
0.8	108.05	108.15	387.3	387.1	0.05		0.8	35	43.5	369.6	369.9	-0.08
0.9	107.82	107.85	390.2	390	0.05		0.9	33	37	364.8	364.8	0.00
1	102.5		297	397	0.00	ii	1	30		361.5	361.5	0.00

Обозначения:

 $T_{\kappa c m}$ — температура кипения смеси; T_{s1} , T_{s2} — температура кипения компонентов 1 и 2; r_{cm} , r_1 , r_2 — теплоты парообразования смеси и компонентов 1 и 2; C_{pHKK}^n , C_{pHKK}^{∞} — средние теплоемкости НКК для пара и жидкости в интервале температур $T_{s1}^{HKK} \div T_{\kappa c m}$; C_{pBKK}^n , C_{pBKK}^{∞} — средние теплоемкости ВКК для пара и жидкости в интервале температур $T_{\kappa c m} \div T_{s2}$; H_{s1}^{HKK} , H_{s2}^{HKK} — энтальпии НКК в состояниях 1 и 2; H_{s2}^{HKK} , H_{s2}^{HKK} — энтальпии вКК в состояниях 1 и 2; H_{s2}^{HKK} — разность энтальпии смеси в состояниях 1 и 2; H_{s2}^{HKK} — концентрация НКК; НКК — низкокипящий компонент; ВКК — высококипящий компонент.

ЛИТЕРАТУРА:

- 1. Рид, Р. Свойства газов и жидкостей / Р. Рид, Дж. Праусниц, Т. Шервуд. Л. : Химия, 1982. 592 с.
 - 2. Бретшнайдер, С. Свойства газов и жидкостей / С. Бретшнайдер. М.-Л.: Химия, 1966. 536 с.
- 3. Варгафтик, Н. Б. Справочник термодинамическим свойствам газов и жидкостей / Н. Б. Варгафтик. М.: Изд-во Наука, 1972. 720 с.
- 4. Татевский, В. М. Химическое строение углеводородов и закономерности в их физико-химических свойствах / В. М. Татевский. М.: Изд.МГУ, 1953. 320 с.
- 5. Yonglove, B. A. Termophysical Propeties of Metane, Ethane, Propane, Butane, isobutene / B. A. Yonglove, J. F. Ely // J. Phys. Chem. Ref. Data. − 1987. − Vol. № 4. − P. 577–797.