УДК 548.736

СИНТЕЗ, КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И НЕКОТОРЫЕ ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА КОМПЛЕКСА $(HGua)_2[(UO_2)_2(di-Pic)_2(SO_4)_2]\cdot H_2O$

*В.И. Мишкевич, аспирант, **А.М. Федосеев, заведующий лабораторией, **М.Н Соколова, младший научный сотрудник, **Н.А. Буданцева, старший научный сотрудник, *Е.Е. Якимова, доцент *кафедра Неорганической химии МИТХТ им. М.В. Ломоносова **Институт физической химии и электрохимии им. А.Н. Фрумкина РАН e-mail: mishkevitch@ gmail.ru

олучен комплекс состава (HGua) $_2$ [(UO $_2$) $_2$ (di-Pic) $_2$ (SO $_4$) $_2$]* H_2 O (Gua = гуанидин,di-Pic =анион дипиколиновой кислоты) и расшифрована его кристаллическая структура. Изучено термическое поведение и измерены спектры поглощения комплекса в видимом и ИК диапазонах.

A complex of composition $(HGua)_2[(UO_2)_2(di-Pic)_2(SO_4)_2] \cdot H_2O$ (Gua = guanidine, di-Pic = anion of dipicolinic acid) was obtained. Single crystal X-ray diffraction showed that the structure of this compound is dimeric. Thermal decomposition, IR-spectrum and spectrum in visible range have been studied.

Ключевые слова: дипиколиновая кислота, актиниды, рентгеноструктурный анализ, ИКспектроскопия, уранил-ион.

Key words: dipicolinic acid, actinides, X-Ray diffraction, IR-spectroscopy, dioxouranium-ion.

Комплексообразование актинидов с 2,6-пиридиндикарбоновой (дипиколиновой) кислотой изучено достаточно подробно. Установлены различные типы ее координации к центральному атому — от монодентатной, за счёт связи с одним атомом кислорода, до хелатной — с участием атома азота и двух атомов кислорода каждого аниона кислоты [1–3]. Выделенные соединения охарактеризованы спектральными и термогравиметрическим методами.

Внешнесферными катионами для анионных комплексов обычно служит ионы щелочных металлов. Кроме того, получен ряд более сложных биметаллических комплексов, в которых в качестве дополнительных координационных центров выступают катионы Cu(II), Ag(I) и Pb(II) [4–6]. Структуры этих соединений весьма разнообразны: от одномерных цепей до трёхмерных каркасов. В качестве органических катионов использовали триэтиламмоний и тетрафениларсоний [1, 7].

Данные о соединениях актинидов с дипиколиновой кислотой и внешнесферными органическими катионами в литературе ограничены. В литературе отсутствуют данные по смешаннолигандным комплексам актинидов с дипиколиновой кислотой.

Поэтому представлялось целесообразным выявить влияние катиона на структуру уранильных комплексов со смешанными лигандами, один из которых — анион дипиколиновой кислоты. В ходе работы впервые получены кристаллы комплекса состава $(HGua)_2[(UO_2)_2(di-Pic)_2(SO_4)_2] \cdot H_2O$ (Gua — гуанидин, di-Pic — анион дипиколиновой кислоты.

Экспериментальная часть

В качестве исходных веществ использовали $U(SO_4)_2 \cdot 4H_2O$ и раствор дипиколината гуанидиния, полученный смешением раствора дипико-

линовой кислоты и навески карбоната гуанидиния (мольное отношение кислота : карбонат гуанидиния = 1:2). При растворении навески $U(SO_4)_2 \cdot 4H_2O$ в 0.1 моль/л растворе (HGua)₂[di-Pic] (мольное отношение 3:1) и последующем изотермическом испарении при комнатной температуре в течение 5 дней из раствора осаждались крупные, хорошо огранённые призматические кристаллы зеленовато-жёлтого цвета.

Другим методом получения комплекса указанного состава было растворение UO_3 в 0.05 М H_2SO_4 до содержания металла \sim 0.01 моль/л и добавление (HGua) $_2$ [di-Pic] до концентрации последней \sim 0.02 моль/л. При выдерживании приготовленных таким образом растворов при комнатной температуре достаточно быстро (в течение часа) выделяются игольчатые кристаллы комплекса указанного состава. При выдерживании этих растворов в течение нескольких часов происходит перекристаллизация, и основным компонентом в твёрдой фазе становится [(UO_2)(di-Pic)(H_2O)] $_n$ [2].

Рентгеноструктурные исследования провона монокристальном дифрактометре Bruker KAPPA APEX II (МоК_α-излучение, графитовый монохроматор) при температуре 100 К [8]. Кристаллы приклеивали к кончику стеклянного волоска. Расчёты выполняли с помощью комплекса программ SAINT-Plus [9]. Поправку на поглощение вводили по методике SADABS [10]. Положение тяжёлых атомов определяли прямым методом (SHELXS97) [11]. На последующих разностных картах электронной плотности локализованы остальные атомы. Все неводородные атомы уточняли как анизотропные, атомы водорода в органических анионах и катионах включали в геометрических позициях с изотропным температурным фактором больше, чем значение U_{eq} для атомов С или N, с которыми они связаны, с коэффициентом 1.2. Атомы водорода молекул воды были локализованы из разностных карт электронной плотности и уточнялись с изотропным температурным фактором больше, чем значение $U_{\rm eq}$ для кислородных атомов, с которыми они связаны, с коэффициентом 1.5, причём расстояние O–H ограничивалось до 0.85(2) Å.

Инфракрасный и электронный спектры поглощения измеряли при комнатной температуре на спектрофотометрах Specord M80 и Shimadzu UV3100, соответственно. Методика приготовления образцов была стандартной, с использованием плавленого NaCl в качестве матрицы. Содержание полученного соединения в матрице составляло ~1% вес при измерении ИК спектра и \sim 8% — при измерении спектра в видимом и УФ диапазонах с учетом значений коэффициентов экстинкции уранил-иона. Взвешивание образцов выполняли на микровесах Sartorius-4503 MP6 (чувствительность 1 мкг). Термограммы регистрировали на дериватографе Q-1500D (Paulik — Paulik — Erdey).

Результаты и их обсуждение

Согласно данным рентгеноструктурного анализа, структура полученного комплекса является димерной: в ней два мономерных фрагмента, содержащие ильный катион и анион пиридиндикарбоновой кислоты, соединены двумя мостиковыми сульфато-группами. Строение комплексного аниона представлено на рис. 1.

Рис. 1. Строение димерного аниона $[(UO_2)(di-Pic)(SO_4)]_2^{2-1}$

Координационное число атомов урана равно 7, координационный полиэдр представляет собой искажённую пентагональную бипирамиду, в апикальных вершинах которой располагаются атомы кислорода ильной группировки, а в плоскости основания расположены два атома кислорода и один атом азота от координированного аниона дипиколиновой кислоты и два кислородных атома от двух различных бидентатно-мостиковых сульфат-ионов (рис. 2).

Катионы гуанидиния присутствуют во внешней сфере в качестве противоиона. Кристаллографические параметры и детали структурного эксперимента приведены в табл. 1,

координаты атомов и тепловые параметры – в табл. 2, выбранные геометрические параметры – в табл. 3.

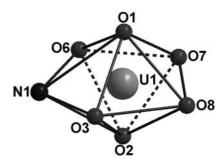


Рис. 2. Координационный полиэдр атома урана

Таблица 1. Кристаллографические параметры и детали структурного эксперимента

Соединение	$(GuH)_2[(UO_2)_2(di-Pic)_2(SO_4)]_2 \cdot H_2O$		
Кристаллическая система	Триклинная		
Пространственная группа симметрии	P-1		
a, Å	8.3330(3)		
b, Å	10.2306(5)		
c, Å	11.9264(5)		
α, градусы	101.594(3)		
β, градусы	100.070(2)		
ү, градусы	91.815(2)		
V, A^3	978.30(7)		
Температура, К	100(2)		
$2\theta_{\max}$, °	80		
Z	1		
Количество собранных отражений	38160		
Количество независимых отражений	12018		
Количество параметров уточнения	268		
Количество установленных ограничений	4		
$R(F)$ $[I > 2\sigma(I)]$	0.0767		
$wR(F2) [I > 2\sigma(I)]$	0.2006		

Таблица 2. Координаты атомов и эквивалентные (изотропные) температурные параметры в структуре $(GuH)_2[(UO_2)_2(di-Pic)_2(SO_4)]_2\cdot H_2O$

				$O_2)_2(d_1-P_1c)_2(SO_4)]_2\cdot H_2O_3$
Атом	X	<u>y</u>	Z	$U_{\text{экв(изо)}}, Å^2$
U1	0.33041(3)	0.03793(3)	0.29825(2)	0.01375(6)
S1	0.3180(2)	-0.1895(2)	0.48652(15)	0.0178(3)
O1	0.1739(8)	0.1486(7)	0.3235(6)	0.0232(11)
O2	0.4867(6)	-0.0743(6)	0.2769(5)	0.0175(9)
O3	0.1215(7)	-0.1339(7)	0.2122(5)	0.0195(10)
O4	-0.0252(9)	-0.2802(6)	0.0640(7)	0.0249(12)
O5	0.4975(8)	0.2617(7)	0.0467(7)	0.0250(12)
O6	0.4444(8)	0.1904(6)	0.2017(5)	0.0202(10)
O7	0.4933(7)	-0.1759(7)	0.5454(5)	0.0234(12)
O8	0.2776(7)	-0.0567(8)	0.4539(5)	0.0225(11)
O9	0.3006(8)	-0.2936(8)	0.3813(5)	0.0251(12)
O10	0.2116(9)	-0.2139(9)	0.5660(6)	0.0292(14)
O11	0.7034(18)	0.4033(12)	0.2980(11)	0.056(3)
H11A	0.603(8)	0.39(3)	0.302(18)	0.085
H11B	0.70(2)	0.41(3)	0.228(7)	0.085
N1	0.2480(7)	-0.0062(6)	0.0800(5)	0.0120(8)
N2	0.3879(9)	0.6418(7)	0.1430(7)	0.0212(11)
H2A	0.3982	0.6602	0.2176	0.025
H2B	0.4437	0.6888	0.1091	0.025
N3	0.2692(11)	0.5141(8)	-0.0367(7)	0.0249(13)
H3B	0.3240	0.5624	-0.0700	0.030
H3C	0.2034	0.4488	-0.0780	0.030
N4	0.1984(10)	0.4664(8)	0.1303(8)	0.0269(15)
H4B	0.2071	0.4834	0.2048	0.032
H4C	0.1330	0.4013	0.0882	0.032
N5	0.9204(10)	0.6458(8)	0.2986(7)	0.0236(13)
H5B	1.0029	0.6743	0.2736	0.028
H5C	0.8964	0.5613	0.2878	0.028
N6	0.8681(9)	0.8629(8)	0.3701(7)	0.0218(12)
H6A	0.8085	0.9199	0.4035	0.026
Н6В	0.9530	0.8902	0.3471	0.026
N7	0.7000(10)	0.6871(8)	0.3883(7)	0.0241(13)
H7A	0.6382	0.7419	0.4219	0.029
H7B	0.6775	0.6023	0.3770	0.029
C1	0.0726(8)	-0.1838(7)	0.1032(6)	0.0156(10)
C2	0.1461(8)	-0.1129(7)	0.0242(6)	0.0131(9)
C3	0.1126(9)	-0.1512(7)	-0.0968(6)	0.0168(11)
Н3А	0.0455	-0.2274	-0.1342	0.020
C4	0.1827(10)	-0.0716(9)	-0.1606(6)	0.0192(12)
H4A	0.1622	-0.0938	-0.2415	0.023
C5	0.2837(9)	0.0414(8)	-0.1015(6)	0.0165(11)
H5A	0.3291	0.0968	-0.1424	0.020
C6	0.3150(8)	0.0693(7)	0.0185(6)	0.0134(9)
C7	0.4291(9)	0.1847(7)	0.0922(7)	0.0161(10)
C8	0.2862(9)	0.5408(7)	0.0801(7)	0.0181(11)
C9	0.8293(9)	0.7332(8)	0.3543(7)	0.0174(11)

Таблица 3. Основные межатомные расстояния в соединении $(GuH)_2[(UO_2)_2(di-Pic)_2(SO_4)_2]\cdot H_2O$

	/2[\ 2/2\	/2\	/2 2	
$(GuH)_2[(UO_2)_2(di-Pic)_2(SO_4)_2]\cdot H_2O$				
U1-01	1	.780(6)		
U1-O2	1	.781(6)		
U1-O3	2	2.373(6)		
U1-O6	2	2.381(6)		
U1-O7	2	2.341(6)		
U1-O8	2	2.357(6)		
U1 N1	2	2.517(6)		

Электронный спектр поглощения уранильного комплекса приведен на рис 3 (записан в диапазоне длин волн 600–350 нм, в более коротковолновой области наблюдается значительное светопоглощение собственно дипиколинатиона). Он содержит ряд хорошо разрешенных полос. Можно отметить, что последовательность характерных для уранил-иона электронных переходов мало отличается от наблюдаемых для комплексов уранила с простыми лигандами. Так, в работе [12] в спектре перхло-

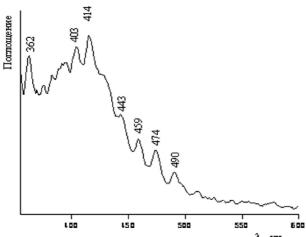


Рис. 3. Электронный спектр поликристаллического образца (8.02 мг/ 100 мг NaCl)

рата уранила, зарегистрированном при комнатной температуре, наблюдаются полосы при 360, 414 и 468 нм, хотя при температуре жидкого азота число электронных переходов в интервале 347-494 нм значительно больше. Спектр комплекса $K_2[UO_2(SO_4)_2]\cdot 2H_2O$ при комнатной температуре имеет диффузный характер, однако позволяет идентифицировать полосы с максимумами при 374, 441, 474 и 490. В спектре двойного нитрата уранила Cs[UO₂(NO₃)₃] зарегистрированы полосы при 474, 460, 448, 426, 375, 364 нм [13]. Наличие в координационной сфере уранил-иона атомов кислорода и азота дипиколинат-иона существенно не влияет на спектр соединения в видимом и УФ диапазонах, что согласуется с выводом авторов [14] о том, что система электронных уровней уранил-иона сохраняется практически одинаковой, независимо от симметрии окружения.

ИК спектр комплекса содержит большой набор полос поглощения, соответствующих

колебаниям присутствующих в его структуре функциональных групп, (рис. 4). Интенсивная полоса с несколькими перегибами в высокочастотном диапазоне является огибающей индивидуальных полос валентных колебаний $v(NH_2)$ катиона гуанидиния и $\nu(CH)$ – пиридинового кольца дипиколинат-иона. В низкочастотном диапазоне присутствуют хорошо разрешенные полосы валентных и деформационных колебаний сульфат- и дипиколинат-ионов, а также уранильной группировки. Наиболее интенсивное поглощение наблюдается в довольно узком интервале 1700 - 1500 см $^{-1}$ и, видимо, является результатом перекрывания характерных для этого диапазона полос колебаний карбоксилатиона $\nu(COO)$, валентных колебаний $\nu(C=N)$ гуанидиний-иона и v(CN) – пиридинового кольца. В табл. 5 приведены положения максимумов полос и возможное отнесение наиболее интенсивных полос поглощения [15 – 17].

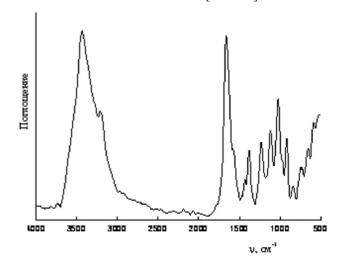


Рис. 4. ИК спектр поликристаллического образца (2.28 мг/200 мг NaCl)

Таблица 5. Отнесение полос поглощения в ИК спектре $(GuaH)_2[(UO_2)_2(di-Pic)_2(SO_4)_2] \cdot H_2O$

Волновое число, см-1	Тип колебаний	Волновое число, см-1	Тип колебаний
3416, 3360 пл., 3196, 3084 пл.	$v(NH_2)$	1232	$\rho(CH)_{ring}$,
2966, 2916	ν(CH)	1120, 1020, 980	$v(SO_4)$
1676,	ν (C=N)	916	v_{as} (UO ₂)
1664, 1632, 1598, 1564,	$v_{as}(COO)$,	896	γ (CH) _{ring}
1520	$\nu(CN)_{ring}$	840	$v_{\rm s} ({\rm UO_2})$
1436, 1380	$v_s(COO), \delta(NH_2)$	648, 588	$\delta(COO^2)$, $\rho(NH_2)$

Координация уранил-ионом донорных атомов сульфат- и дипиколинат-ионов приводит к понижению частот валентных колебаний этих групп относительно спектров некоординированных лигандов, причем бидентатно-мостиковой координации сульфат-ионов соответствует отчетливое расщепление полосы $\nu(SO_4)$ на три компоненты. Напротив, координация атомов пиридинового азота дипиколинат-ионов проявляется в спектре комплекса повышением частот

валентных и деформационных колебаний пиридинового кольца.

Термическое разложение на воздухе образца $(GuaH)_2[(UO_2)_2(di-Pic)_2(SO_4)_2]\cdot H_2O$ изучали в температурном интервале $20-800^{\circ}C$ со скоростью нагрева 10 град/мин (рис. 5). Нагревание до $100^{\circ}C$ не сопровождается термическими эффектами. При температурах 110 и $190^{\circ}C$ наблюдаются незначительные эндо-эффекты, повидимому, соответствующие испарению сорбиро-

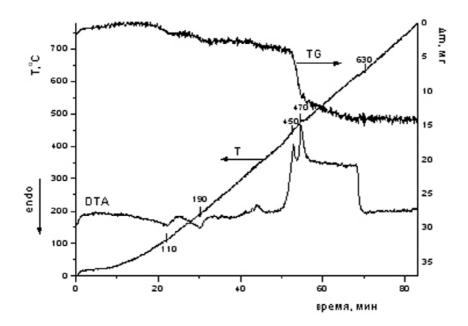


Рис. 5. Дериватограмма комплекса $(GuaH)_2[(UO_2)_2(di-Pic)_2(SO_4)_2] \cdot H_2O$.

ванной и кристаллизационной воды, соответственно. При достижении температуры 430°C наблюдается значительная потеря массы с двумя сильными экзо-эффектами с максимумами при 450 и 470°C, обусловленная, вероятно, разложением органической части комплекса. При 630°C масса образца принимает постоянное значение, что свидетельствует об окончании процесса разложения.

Таким образом, найдены условия получения смешанного сульфатно-дипиколинатного комп-

лекса уранила с использованием сульфата урана(IV) либо сернокислых растворов уранила в качестве исходных соединений. Соединение, в котором сульфат-ионы выступают в роли мостиков между координационными центрами, описано в работе [18] на примере комплекса уранила с никотиновой кислотой. Однако, несмотря на то, что дипиколинатные комплексы более устойчивы в растворе, чем никотинатные и сульфатные, смешанный комплекс уранила кристаллизуется достаточно легко.

ЛИТЕРАТУРА:

- 1. Preparation, characterization, thermal analysis and crystal structure of bis(tetraphenylarsonium)uranil bis(pyridine-2,6-dicarboxylate) hexahydrate / G. Marangoni [et al.] // J. Inorg. Nucl. Chem. 1974. Vol. 36. P. 1787–1794.
- 2. The crystal and molecular structure of pyridine-2,6-dicarboxylatodioxouranium(VI) monohydrate / A. Immirzi [et al.] // Acta Crystallogr. Sect. B : Struct. Crystallogr. Cryst. Chem. 1975. Vol. 31. P. 1023–1028.
- 3. Thuery, P. One-dimensional uranium-organic framework in catena-poly[[di-#2-hydroxido-bis[dioxouranium(VI)]]-di-#2-2-pyridylacetato-#3O,N:O';#3O:O',N] / P. Thuery // Acta Cryst. 2008. Vol. C64. P. m50–m52.
- 4. Синтез и кристаллическая структура трилитийди(2,6-пиридиндикарбоксилато)диоксонептунат(V)гексагидрата Li₃NpO₂[2,6-(OOC)₂C₅H₃N]2·6H₂O/ Γ . Б. Андреев, М. Ю. Антипин, А. М. Федосеев, Н. А. Буданцева // Докл. АН. 2000. Т. 374, № 3. С. 343–346.
- 5. Solid-State Luminescence and π -Staking in Crystalline Uranyl Dipicolinates / J. M. Harrowfield [et al.] // Eur. J. Inorg. Chem. 2006. Vol. 2006. P. 389–396.
- 6. Synthesis, structure and fluorescent studies of novel uranium coordination polimers in the pyridinedicarboxylic acid system / M. Frisch, C. L. Cahill // Dalton Trans. 2006. Is. 39. P. 4679–4690.
- 7. Masci, B. Uranyl complexes with the pyridine-2,6-dicarboxylato ligand: new dinuclear species with μ - η^2 , η^2 -peroxide, μ_2 -hydroxide or μ_2 -methoxide bridges / B. Masci, P. Thuery // Polyhedron. 2005 Vol. 24. P. 229.
 - 8. APEX2. Bruker AXS Inc., Madison, Visconsin, USA (2007).

Вестник МИТХТ, 2010, т. 5, № 6

- 9. SAINT-Plus. Version 6.01. Bruker AXS Inc., Madison, Visconsin, USA (1998).
- 10. Sheldrick G. M. (2004). SADABS. Bruker AXS Inc., Madison, Visconsin, USA.
- 11. Sheldrick G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- 12. Bell, J. T. The absorption spectrum of the uranyl ion in perchlorate media: Part I. Mathematical resolution of the Overlapping band structure and studies of the environmental effects / J. T. Bell, R. E. Biggera // J. Mol. Spectr. 1965. Vol. 18 (3). P. 247–275.
- 13. The electronic structure of the uranyl ion: II. The electronic spectra of $CsUO_2(NO_3)_3$ and $NaUO_2(CH_3COO)_3$ / R. G. Denning [et al.] // Mol. Phys. 1979. Vol. 37, Is. 4. P. 1089–1107.
- 14. Строение ураниловых комплексов и спектры видимой области /Вдовенко В.М., Скобло А.И., Суглобов Д.Н.// Радиохимия. −1969. − Т.11, №1. − С. 30
- 15. Bailey, Ph. J. Guanidines as neutral monodentate ligands; syntheses and crystal structures of $[Co\{PhN=C(NHPh)2\}2Cl2]$ and $[Ag\{PhN=C(NHPh)2\}][SO3CF3]$ /Ph. J. Bailey, K. J. Grant. S. Pace // Dalton Trans. -1997. –Is. 22. P. 4263-4266.
- 16. Drozd, M. The theoretical calculations of vibrational spectra of guanidine selenate and guanidinium sulphate. Determination of direction of transition dipole moments by two methods: oriented gas model and changes in displacement eigenvectors computed by DFT method / M. Drozd // J. Mol. Struct. -2005. Vol. 756 (1-3). P. 173–184
- 17. Накамото, К. ИК-спектры и спектры КР неорганических и координационных соединений / К. Накамото. : пер. с англ. / Под ред. Ю. А. Пентина. М. : Мир, 1991. 536 с.
- 18.Синтез и кристаллическая структура [UO₂(SO₄)(C₆H₅NO₂)₂(H₂O)] H₂O / Л. Б. Сережкина [и др.] // Журн. неорган. химии. -2005. T 50, № 8. C. 1273-1279.