УДК 663.1

МОДЕЛИРОВАНИЕ ПРОЦЕССА НЕПРЕРЫВНОЙ ФЕРМЕНТАЦИИ С НЕЛИНЕЙНОЙ КИНЕТИКОЙ РОСТА

* Ю.Л. Гордеева, доцент, * Ю.А. Ивашкин, профессор, Л.С. Гордеев, профессор

*Московский государственный университет прикладной биотехнологии Российский химико-технологический университет им. Д.И. Менделеева e-mail: l.s.gordeev@yandex.ru

риведены результаты математического моделирования процесса микробиологического синтеза в биореакторе с перемешиванием непрерывного действия с нелинейной кинетикой роста. Получены оценки концентрации субстрата, биомассы и продукта.

The performance of a continuous bioreactor was theoretically analyzed for steady-state operation. The effect of substrate feed concentration and dilution rate was analyzed. Equations for estimation of productivity and of concentrations of the substrate and biomass were obtained.

Ключевые слова: моделирование, биореактор, нелинейная скорость роста, ферментация, продуктивность, оптимизация.

Key words: modeling, bioreactor, nonlinear growth rate, fermentation, productivity, optimization.

Рассматривается процесс микробиологического синтеза в аппарате непрерывного действия, кинетическая модель которого достаточно широко используется при описании получения различных продуктов [1–7]. Процесс реализуется следующим образом. В аппарат с перемешиванием объемом V непрерывно поступает субстрат с объемной скоростью Q и концентрацией субстрата S_f . В аппарате синтезируется биомасса с концентрацией X и продукт с концентрацией Р. Из аппарата непрерывно выводится поток с той же объемной скоростью Q и концентрацией компонентов – субстрата S, биомассы X и продукта P. Для моделирования процесса использованы условия идеального перемешивания.

Система уравнения модели (материального баланса) имеет вид:

$$\begin{cases} -D \cdot X + \mu \cdot X = 0 \\ D \cdot (S_f - S) - \frac{1}{Y_{X/S}} \cdot \mu \cdot X = 0 \\ -D \cdot P + (\alpha \cdot \mu + \beta) \cdot X = 0, \end{cases}$$
 (1)

где D = Q/V, ч⁻¹; V – объем реактора, л; Q – объемная скорость потока, л/ч; μ — удельная скорость роста биомассы, ч $^{-1}$; $Y_{X/S}$ — стехиометрический коэффициент, г/г; X, S, P концентрации биомассы, субстрата и продукта на выходе из реактора, соответственно, г/л; S_f – концентрация субстрата в потоке, поступающем в реактор, Γ/π ; α , β – константы.

Удельная скорость роста записана в виде:

$$\mu = \mu_m \cdot (1 - P/P_m) \cdot S / (K_m + S + S^2 / K_i), \tag{2}$$

где μ_m – максимальная удельная скорость роста, \mathbf{q}^{-1} ; P_m – константа насыщения продукта, г/л; K_i константа ингибирования субстрата, г/л.

Из первого уравнения системы (1) получаем:

$$D = \mu. (3)$$

Соотношение (3) означает, что величины Dи μ имеют взаимоограничение, т.е. величина протока D должна соответствовать удельной скорости роста. Это взаимоограничение будет отмечено ниже.

Учитывая (3) и (2), получим:

$$P = P_m \cdot \left(1 - D/\mu_m \cdot \left(K_m + S + S^2/K_i\right)/S\right). \tag{4}$$

Из второго уравнения и третьего уравнений системы (1) получаем:

$$X = (S_f - S) \cdot Y_{X/S}, \tag{5}$$

$$-D \cdot P + (\alpha \cdot D + \beta) \cdot X = 0.$$
 (6)

С учетом (4), (5) и (6) запишем уравнения относительно концентрации субстрата S:

$$D \cdot P_m \cdot \left(1 - D/\mu_m \cdot \left(K_m + S + S^2/K_i\right)/S\right) = (\alpha \cdot D + \beta) \cdot \left(S_f - S\right) \cdot Y_{X/S}. \tag{7}$$

Решение (7) относительно концентрации субстрата на выходе из реактора S имеет вид:

$$S = \frac{B}{2 \cdot A} \pm \sqrt{\left(\frac{B}{2 \cdot A}\right)^2 + \frac{C}{A}},\tag{8}$$

$$A = (\alpha \cdot D + \beta) - (K \cdot D^2 \cdot P_m) / (\mu_m \cdot K_i),$$

$$B = (\alpha \cdot D + \beta) \cdot S_f +$$
(9)

$$B = (\alpha \cdot D + \beta) \cdot S_f + \tag{10}$$

$$+\left(K\cdot D^2\cdot P_m\right)\!\!/\mu_m - K\cdot D\cdot P_m,\tag{10}$$

$$C = K \cdot D^2 \cdot P_m \cdot K_m / \mu_m , \qquad (11)$$

 $K = 1/Y_{X/S} .$

Выбор знака (±) в выражении (8) определяется условием ограничения для S:

$$0 \le S \le S_f \,. \tag{12}$$

Знак равенства в (12) относится к предельным случаям.

Таким образом, для Х и Р имеем:

$$X = \left(S_f - \left(\frac{B}{2 \cdot A} \pm \sqrt{\left(\frac{B}{2 \cdot A}\right)^2 + \frac{C}{A}}\right)\right) \cdot Y_{X/S}, \quad (13)$$

$$P = X \cdot (\alpha + \beta/D). \tag{14}$$

Формула расчета продуктивности D·P (производительности по целевому компоненту P) имеет вид:

$$D \cdot P = X \cdot (\alpha \cdot D + \beta). \tag{15}$$

Анализ полученных соотношений показывает следующее. Если в процессе субстрат исчерпывается полностью, т.е. S=0, удельная скорость роста μ обращается в нуль и процесс ферментации не протекает. Далее, если концентрация продукта достигает (или близка) значения P_m , удельная скорость роста также равна нулю. Это означает, что предельное максимальное значение P не может превышать P_m .

Величина протока D, как отмечалось ранее, ограничена условием (3). Это означает, что максимальное значение D в процессе должно быть меньше величины, определяющей полное вымывание субстрата из аппарата. Очевидно, что тогда образование продукта не происходит. Математически это означает, что P=0, и тогда из (2) получаем предельное значение D:

$$\max D = \frac{\mu_m \cdot S_f}{K_m + S_f + S_f^2 / K_i} . \tag{16}$$

Таким образом, в соотношениях (8)-(15):

$$0 < D \le \max D$$
 , (17) где $\max D$ вычисляется по формуле (16) для любого значения S_{ℓ}

На рис. 1 показана зависимость удельной скорости роста μ от концентрации субстрата S при нескольких значениях P.

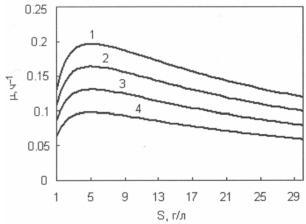


Рис. 1. Зависимость удельной скорости роста μ от концентрации субстрата в биореакторе при: 1-P=20 г/л; 2-P=25 г/л; 3-P=30 г/л; 4-P=35 г/л.

Таблица 1. Численные значения параметров (базовый вариант).

Параметр	$Y_{X/S}$	α	β	μ_m	P_{m}	K_m	K_i
Величина	0.4 γ/γ	2.2 γ/γ	$0.2~{ m H}^{-1}$	0.48 y^{-1}	50 г/л	1.2 г/л	22 г/л

Рис. 1 иллюстрирует нелинейную зависимость удельной скорости роста μ от концентрации субстрата в реакторе при всех значениях концентрации продукта. Кроме того, при определенных концентрациях субстрата эта скорость имеет максимальное значение. Последнее предполагает возможность получения продукта с максимальной скоростью или максимального количества в единицу времени с единицы объема реактора.

Приведем некоторые результаты моделирования процесса, полученные из решения уравнений модели (8)-(17).

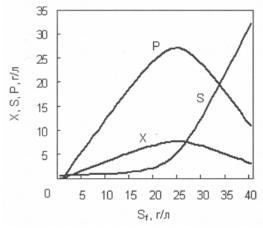


Рис. 2. Зависимость концентраций компонентов на выходе из биореактора от концентрации субстрата в поступающем потоке при D=0.15 ч⁻¹.

На рис. 2 приведены зависимости концентрация компонентов на выходе из реактора от концентрации субстрата S_f в поступающем потоке при постоянной скорости протока D. При моделировании использованы данные табл. 1. Величина скорости протока D=0.15 ч $^{-1}$.

Влияние величины максимальной удельной скорости роста на концентрацию продукта P показано на рис. 3 [6] при D=0.1636 ч $^{-1}$.

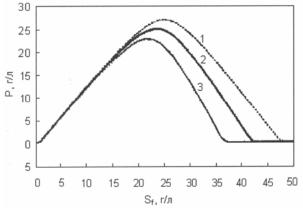


Рис. 3. Влияние максимальной удельной скорости роста μ_m на концентрацию продукта P в реакторе при: $1 - \mu_m = 0.52 \text{ y}^{-1}$; $2 - \mu_m = 0.48 \text{ y}^{-1}$; $3 - \mu_m = 0.44 \text{ y}^{-1}$.

Характер зависимостей концентрации продукта P на рис. 2 и 3 отражает возможность реализации процесса в условиях достижения максимального значения P. При этом очевид-

ным является факт существования, по крайней мере, двух режимов ферментации, дающих одинаковое значение Р. Это же относится и к величине продуктивности $(D \cdot P)$, так как на приведенных рисунках D=const. Численные данные, соответствующие максимальному значению P и $(D \cdot P)$ для рис. 2, следующие: при $D=0.15 \text{ q}^{-1}$: $P_{max}=27.08 \text{ г/л}$; S=5.14 г/л; X=7.66 г/л; $(D \cdot P) = 4.062$ г/(л·ч). Соответствующее значение концентрации S_f =24.3 г/л. Важно отметить, что для этих данных неизрасходованный субстрат составляет 21% от поступающего.

Данные, полученные для других численных значений D и S_f (рис. 3 при μ_m =0.48), следующие [6]: при D=0.1636 ч⁻¹: P_{max} =25.0 г/л; S=5.138 г/л; X=7.3 г/л; $(D\cdot P)=4.09$ г/(л·ч). Значение концентрации $S_f=23.3991$ г/л.

В качестве примера существования двух режимов, реализующих одинаковое значение Р на выходе из реактора, приведем данные для значений $S_{r}=15.55$ г/л и $S_{r}=32.99$ г/л (использованы значения статьи [3]).

Для S_f =15.55 г/л при D=0.15 ч⁻¹ : S=1.401 г/л; $X=5.66 \text{ г/л}; P=20.0 \text{ г/л}; (D \cdot P)=3.0 \text{ г/(л·ч)}.$

Для $S_r=32.99$ г/л при D=0.15 ч⁻¹ : S=18.839 Γ/π ; X=5.66 Γ/π ; P=20.0 Γ/π ; (D·P)=3.0 $\Gamma/(\pi \cdot \Psi)$.

При этом процент неиспользованного субстрата в первом случае составит 9%, во втором -57%. Таким образом, режимы, одинаковые по показателям P и X различаются количеством использованного субстрата.

Рис. 3 показывает, что значение максимальной концентрации P, а также положение экстремума, изменяется в зависимости от величины максимальной удельной скорости роста

Максимальное значение P (рис. 2 и 3) удобно вычислить аналитически по S, т.е. записать необходимое условие экстремума (используя формулу (4)):

$$\frac{dP}{dS} = 0. ag{18}$$

Это условие дает:

$$S^{opt} = \left(K_m \cdot K_i\right)^{1/2}.\tag{19}$$

Подставляя это значение в (4), получим:

$$= P_m \cdot \left(1 - \frac{D}{\mu_m} \cdot \frac{K_m + (K_m \cdot K_i)^{1/2} + \frac{K_m \cdot K_i}{K_i}}{(K_m \cdot K_i)^{1/2}} \right)$$
(20)

$$P_{\text{max}} = P_m \cdot \left(1 - \frac{D}{\mu_m} \cdot \left(2 \cdot \left(\frac{K_m}{K_i} \right)^{1/2} + 1 \right) \right). \tag{21}$$

Максимальное значение для X будет:

$$X = (S_f - S) \cdot Y_{X/S} = (S_f - (K_m \cdot K_i)^{1/2}) \cdot Y_{X/S}.$$
 (22)

Таким образом, для любого значения S_f с учетом ограничения по S (12) расчет условий максимального значения P и, следовательно, $(D \cdot P)$ можно выполнить по формулам (19)-(22).

Для записи условия существования множественности стационарных состояний воспользуемся выводом в работе [3]. Основополагающим соотношением для множественности по S_f при постоянном значении D является условие (условие наличия экстремума на кривых рис. 2 и рис. 3):

$$\frac{dP}{dS_f} = 0. {23}$$

Для выполнения этого условия запишем (2)

$$D = \mu_m \cdot \left(1 - \frac{P_m}{P}\right) \cdot \frac{1}{K_m/S + 1 + S/K_i}$$
 (24)

$$D = N(P)/R(S), (25)$$

$$N(P) = \mu_m \cdot (1 - P_m/P);$$

$$R(S) = (K_m/S) + 1 + (S/K_i).$$

Из уравнений (5) и (6) запишем:
$$P = Y_{X/S} \cdot (\alpha + \beta/D) \cdot (S_f - S). \tag{26}$$

Используя (23), имеем:

$$\frac{dP}{dS_f} = Y_{X/S} \cdot (\alpha + \beta/D) \cdot (1 - dS/dS_f) = 0.$$
 (27)

Откуда следует:

$$\frac{dS}{dS_f} = 1. (28)$$

Из дифференцирования (25) по S_f с учетом (23) и (28) получаем условие:

$$\frac{dR(S)}{dS} = 0. (29)$$

Используя (8), условие $\frac{dS}{dS_f} = 1$ будет [3]:

$$a_4 + \left(\frac{a_4 \cdot (a_3 + a_4 \cdot S_f)}{((a_3 + a_4 \cdot S_f)^2 + 4 \cdot a_1 \cdot K_m)^{0.5}}\right) = 2 \cdot a_1, \quad (30)$$

$$a_1 = \frac{\mu_m \cdot a_2}{D \cdot P_m} - 1/K_i , \qquad (31)$$

$$a_2 = (\alpha + \beta/D) \cdot Y_{X/S}, \qquad (32)$$

$$a_3 = 1 - \frac{\mu_m}{D},\tag{33}$$

$$a_4 = \frac{\mu_m}{D \cdot P_m} \cdot a_2 \,. \tag{34}$$

Таким образом, требование множественности выполняется, если параметры процесса соответствуют условию (30) и условию (29). В последнем соотношении $R(S) = (K_m/S) + 1 +$ $+(S/K_i)$.

Нетрудно видеть, что условие (30) приводит к соотношению

$$S = (K_m \cdot K_i)^{1/2} \tag{35}$$

и, следовательно, имеем:

$$(K_m \cdot K_i)^{1/2} = \frac{B}{2 \cdot A} \pm \sqrt{\left(\frac{B}{2 \cdot A}\right)^2 + \frac{C}{A}} . \tag{36}$$

Понятно, что соотношения (29) и (30) можно использовать, в основном, в качестве проверочных для совокупности параметров процесса, определяющих существование множественности стационарных состояний.

В заключение отметим следующее. При моделировании процесса микробиологического синтеза для непрерывных условий с нелинейной кинетикой получены зависимости для расчета концентраций компонентов на выходе из биореактора с перемешиванием. Приведены численные результаты, показавшие возможность существования множественности стационарных состояний, что важно для практической реализации процесса. Показана возможность и сформулированы соотношения для обеспечения условий получения максимума продукта.

ЛИТЕРАТУРА:

- 1. Agarwal P., Koshy G., Ramirez M. An algorithm for operating a fed-batch fermenter at optimum specific-growth rate // Biotechnol. Bioeng. 1989. № 33. P. 115–125.
- 2. Henson M.A., Seborg D.E. Nonlinear control strategies for continuous fermenters // Chem. Eng. Sci. 1992. № 47. P. 821–835.
- 3. Kumar G.P., Subrahmanya J.V.K., Chidambaram M. Periodic operation of a bioreactor with input multiplicities // Can. J. Chem. Eng. 1993. № 71. P. 766–770.
- 4. McLain R.B., Kurtz M.J., Henson M.A., Doule III Francis J. Habituating control for nonsquare nonlinear processes // Ind. Eng. Chem. Res. 1996. № 35. P. 4067–4077.
- 5. Ruan L., Chen X.D. Comparison of several periodic operations of a continuous fermentation process // Biotechnol. Prog. 1996. № 12. P. 286–288.
- 6. Saha P., Patwardhan S.C., Ramahandra Rao V.S. Maximizing productivity of a continuous fermenter using nonlinear adaptive optimizing control // Bioprocess Eng. 1999. № 20. P. 15–21.
- 7. Henson, M. Exploiting cellular biology to manufacture high-value products // JEEE Control Systems Magazine. 2006. August. P. 54–62.
- 8. Гордеева Ю.Л., Винаров А.Ю., Ивашкин Ю.А. Численное моделирование статики непрерывного ферментативного процесса в аппарате с перемешиванием // Математические методы в технике и технологиях: сб. трудов XXI Междунар. конф., Саратов, 27–30 мая 2008. Саратов, 2008. Т. 6. С.109–110.
- 9. Гордеева Ю.Л., Винаров А.Ю., Ивашкин Ю.А. Динамические характеристики непрерывного ферментативного процесса в аппарате с перемешиванием // Математические методы в технике и технологиях: сб. трудов XXI Междунар. конф., Саратов, 27–30 мая 2008. Саратов, 2008. Т. 6. С.110–112.