УДК: 539.199 : 541.6

ВЛИЯНИЕ МОЛЕКУЛЯРНОЙ МАССЫ НА АДСОРБЦИЮ И СТРОЕНИЕ ГРАНИЧНЫХ СЛОЕВ ЭПОКСИДНЫХ ОЛИГОМЕРОВ НА ЖИДКОЙ И ТВЕРДОЙ ГРАНИЦАХ РАЗДЕЛА ФАЗ

И.Д. Симонов-Емельянов, заведующий кафедрой, А.Н. Трофимов, соискатель, *В.С.Копытин, старший преподаватель, *В.М. Комаров, профессор, **Г.А. Симакова, профессор

кафедра Химии и технологии переработки пластмасс и полимерных композитов
*кафедра Информационных технологий
**кафедра Коллоидной химии им. С.С. Воюцкого
МИТХТ им. М.В. Ломоносова
e-mail: komarov@mitht.ru

зучено влияние молекулярной массы (ММ) на адсорбцию эпоксидных олигомеров (ЭО) на границе раздела раствор эпоксидного олигомера в толуоле—вода и на поверхности дисперсного наполнителя (стекла). Проведено сравнение полученных экспериментальных результатов с расчетными параметрами адсорбционного слоя на основе теоретической модели адсорбции. Анализ полученных результатов свидетельствует о том, что адсорбция на поверхности раздела раствор эпоксидного олигомера в толуоле — вода является мономолекулярной, а коэффициент заполнения поверхности меньше, чем при наиболее плотной упаковке, также как и для предельно насыщенного адсорбционнго слоя на поверхности стекла. При этом адсорбция на границе раздела со стеклом была полимолекулярной и с ростом ММ уменьшалась с 6 до 2 монослоев.

The effect of molecular mass on adsorption of epoxy oligomers on water-toluene solution interfaces and a glass dispersed filler surface was investigated. Comparison of results (experimental and calculated on the basis of the theoretical adsorption model of) indicated that adsorption on the water-toluene interface was monomolecular. On the contrary, adsorption on the glass dispersed filler surface was polymolecular.

Ключевые слова: адсорбция, эпоксидный олигомер, поверхностное натяжение, молекулярная масса, макромолекула.

Key words: adsorption, oligomer, surface, molecular mass, macromolecule.

Создание новых полимерных композиционных материалов (ПКМ) непосредственно связано с использованием гетерогенных, гетерофазных полимерных систем. Формирование границы раздела фаз и ее структура и свойства являются фундаментальной проблемой полимерного материаловедения и определяется как неравновесной термодинамикой взаимодействующих поверхностей, так и кинетикой процесса, связанной с пропиткой полимерами дисперсных и армированных систем [1-4]. Термодинамические свойства исходных фаз в ПКМ определяют начальный этап взаимодействия в наполненных гетерогенных системах - адсорбцию, смачивание и растекание полимерного связующего по поверхности наполнителя.

Процессы адсорбции играют существенную роль не только в комплексе конечных физико-химических и физико-механических свойств полимерных материалов, но и в технологических процессах формования ПКМ при его переработке в изделия. Центральным вопросом этой проблемы является адсорбция полимеров на твердых поверхностях и формирование границы раздела фаз. Совместная работа полимерной матрицы и армирующих элементов структуры, например, в стеклопластиках на основе эпоксидных счвязующих, обеспечивается наличием границы раздела фаз. Адсорбция полимеров на поверхности стекловолокна определяет особен-

ности структуры граничного слоя, плотность упаковки и расположение макромолекул в граничных слоях, а также молекулярную подвижность цепей, их релаксационные и другие свойства. Результирующим свойством, зависящим от многих переменных, является адгезия и адгезионная прочность на границе раздела фаз. Однако, адгезионное взаимодействие на границе раздела полимер — твердое тело в первую очередь будет зависеть от адсорбционного взаимодействия.

Адсорбционная теория адгезии [1], связывающая адгезию с действием межмолекулярных сил на границе раздела, т.е. с адсорбцией, является в настоящее время наиболее актуальной. Однако ее развитие сдерживается вследствие отсутствия достоверной информации, с одной стороны, об адсорбированных макромолекулах, их расположении на твердых поверхностях, взаимодействии и образовании связей, с другой – о структуре и строении твердой поверхности, расположении на ней активных центров и распределении их по энергиям, а также о строении и структуре граничных слоев [3, 4].

В настоящей работе исследовали влияние молекулярных характеристик эпоксидных олигомеров (ЭО) на поверхностное натяжение, адсорбцию на границе раздела раствор эпоксидного олигомера в толуоле – вода и с твердой поверхностью (стекло), определяли адсорбционные характеристики ЭО. На основе теоретических

положений адсорбционной теории рассчитывали параметры граничных слоев, геометрические размеры адсорбированных молекул и адсорбционные характеристики на поверхностях раздела фаз.

В качестве объектов исследования использовали растворы разной концентрации в толуоле эпоксидиановых олигомеров на основе эпихлор-

гидрина и дифенилолпропана [5] промышленных марок DER-330, ЭД-22, ЭД-20, ЭД-16 и ЭД-8, различающиеся молекулярными характеристиками (табл. 1). Адсорбентом был выбран стеклянный порошок из бесщелочного не модифицированного стекла, гранулометрический состав, диаметр частиц и удельную поверхность которого определяли стандартными методами.

Таблица 1. Молекуля	рно-массовые характеристики	эпоксидиановых олигомеров.

Эпоксидный олигомер, марка	M_{cp}	M_w/M_n	Общее число фракций	Содержание1-ой фракции, об. д.
DER-330	364	1.03	3	0.92
ЭД-22	395	1.07	5	0.83
ЭД-20	403	1.08	5	0.81
ЭД-16	635	1.28	11	0.42
ЭД-8	1257	1.43	>15	0.14

Примечание: первая фракция с ММ = 340.

Поверхностное натяжение растворов ЭО в толуоле определяли сталагмометрическим методом. На рис. 1 в качестве примера приведены зависимости поверхностного натяжения от концентрации раствора ЭО марки DER-330 до и после адсорбции на стекле. Видно, что поверхностное натяжение на границе раздела вода раствор ЭО в присутствии дисперсного наполнителя выше, что можно объяснить большей адсорбцией на его поверхности.

Параметры и характеристики адсорбции вычисляли из изотерм зависимостей поверхностного натяжения от концентрации раствора ЭО в толуоле.

Как правило, для обработки изотерм поверхностного натяжения используют графический метод, который не всегда корректен. В работе для более точного вычисления производной $d\sigma/dc$ использовали аппроксимирующую функцию $f = \sigma(c)$ следующего вида:

$$\sigma(c) = \sigma_0 - \frac{K_1 \cdot K_2 \cdot c}{(1 + K_2 \cdot c)}$$

где $\sigma_0 = \sigma(c=0)$; $K_1 = \sigma_0 - \sigma_{MUH}$, мДж/м²; K_2 — нормировочный множитель, м³/моль; $\sigma_{MUH} = \sigma(c \rightarrow \infty)$.

Анализ показал, что максимальная погрешность вычислений в этом случае не превышала погрешности используемого экспериментального метода измерения поверхностного натяжения, равной $\sim 3\%$.

Для определения количества адсорбированного ЭО на границах раздела толуол—вода использовали связь между избыточным количеством вещества, приходящимся на единицу поверхности, адсорбцией (Γ , моль/м²) и способностью вещества снижать поверхностное натяжение разбавленных растворов, описываемое известным уравнением Γ иббса [7]:

$$\Gamma = -\frac{c}{RT} \cdot \frac{d\sigma}{dc}$$

где c – концентрация раствора, моль/м³; R – универсальная газовая постоянная; T – абсолютная

температура; σ – поверхностное натяжение, мДж/м²; $d\sigma/dc$ – поверхностная активность.

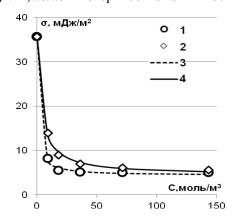


Рис.1. Зависимость межфазного натяжения ЭО марки DER-330 без (1) и в присутствии наполнителя (2) от концентрации, T=295K. $1-\sigma$, мДж/м²; $2-\sigma$ ', мДж/м²; $3-\sigma$ _{расч}, мДж/м²; $4-\sigma$ ', расч, мДж/м².

Из зависимостей поверхностного натяжения растворов от концентрации до и после адсорбции эпоксидного олигомера рассчитаны значения адсорбции из растворов ЭО на границе раздела вода—толуол при различных концентрациях олигомеров и определены характеристики поверхностного слоя:

- максимальное значение адсорбции $\Gamma_{\text{макс}}$ и $\Gamma'_{\text{макс}}$ на границе раздела вода-толуол.
- площадь, занимаемая молекулой ЭО в предельно насыщенном монослое, $S_{\text{мол}}$, и $S'_{\text{мол}}$;
 - толщину адсорбционного слоя, δ и δ ';

Величины со штрихом относятся к измерениям в присутствии дисперсного наполнителя. Зависимости поверхностного натяжения растворов от концентрации до и после адсорбции эпоксидного олигомера на межфазной границе раствор эпоксидного олигомера—вода использовали для расчета значения адсорбции на поверхности стеклянного наполнителя A_{cm}

Таблица 2. Характеристики адсорбционного слоя на границе раздела раствор ЭО – вода.

Эпоксидный олигомер марки	$\sigma_{\!\scriptscriptstyle MUH}, \ \mathrm{M} \Delta \mathrm{M}^2$	σ′ _{мин} , мДж/м²	δ, Á	δ', Å	G, мДж \cdot м/моль	$G^{\prime},$ мДж \cdot м/моль	r _m , Å
DER-330	17.23	17.46	11.7	16.3	-28.5	-8.6	66
ЭД-22	10.67	10.89	14.2	17.5	-22.2	-7.2	70
ЭД-20	5.86	6.47	14.4	17.2	-18.7	-8.1	71
ЭД-16	4.83	5.99	26.0	26.4	-3.6	2.0	99
ЭД-8	4.39	4.44	34.3	35.2	-3.1	-1.8	164

где G и G' – поверхностная активность, равная $d\sigma/dc(c=0)$ и $d\sigma'/dc(c=0)$, соответственно; r_m – наиболее вероятное расстояние между концами макромолекулы, рассчитанное по модели [11].

Из данных таблицы видно, что с ростом ММ возрастает толщина адсорбционного слоя и поверхностная активность на границе раздела вода — толуол. Толщина адсорбционного слоя Θ 0 ниже максимально возможной, равной r_m , что свидетельствует о том, что в адсорбционном

слое макромолекулы располагаются не в виде плотно упакованных цилиндров (щетки).

В табл. 3 представлены результаты для максимальной адсорбции на поверхности раздела поверхности вода-раствор ЭО и коэффициенты ее заполнения (Θ и Θ).

Таблица 3. Зависимость адсорбционных характеристик на межфазной поверхности вода-раствор ЭО.

Смола	M_{cp}	Доля 1-й фракции,об.д.	A , Γ/m^2	A ', Γ/M^2	Θ	Θ '
DER	364	0.92	0.0006	0.0004	0.57	0.40
ЭД-22	395	0.83	0.0007	0.0006	0.53	0.44
ЭД-20	403	0.81	0.0008	0.0008	0.60	0.54
ЭД-16	635	0.43	0.0018	0.0018	0.41	0.41
ЭД-8	1257	0.14	0.0049	0.0048	0.20	0.19

Полученные результаты показывают, что количество адсорбированного вещества на этих межфазных границах раздела возрастает с ростом молекулярной массы и снижается с ростом доли 1-й фракции (фракции с наименьшей MM_{cp}), хотя степень заполнения поверхности, напротив, снижается с ростом MM_{cp} , и возрастает с ростом доли 1-й фракции.

Адсорбцию на поверхности стекла $A_{\rm cr}$. рассчитывали по стандартной методике, используя изотермы поверхностного натяжения без и в присутствии в растворе 90 дисперсного стеклонаполнителя [12].

Зависимость адсорбции всех исследуемых эпоксидных олигомеров на поверхности адсорбента — стекла от концентрации представляла собой S-образную кривую, что свидетельствует о двух различных механизмах адсорбции (рис. 2).

На начальном участке кривой до концентрации $c_{{\scriptscriptstyle MOHO}}$ адсорбция хорошо описывается уравнением Ленгмюра, что свидетельствует о ее мономолекулярном характере. Значения $A_{{\scriptscriptstyle MOHO}}$, при концентрации, равной $c_{{\scriptscriptstyle MOHO}}$ в зависимости от ${\rm MM_{cp}}$ ЭО представлены на рис. 3.

С ростом концентрации ЭО в толуоле выше $c_{\text{моно}}$ наблюдается полимолекулярная адсорбция или адсорбция агрегатов [2], пока не установится равновесие между составом (по ММ) макромолекул в адсорбционном слое и в объеме фазы.

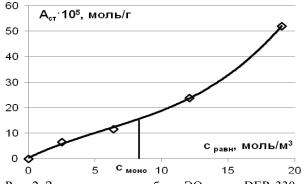


Рис. 2. Зависимость адсорбции ЭО марки DER-330 на поверхности дисперсного наполнителя от равновесной концентрации.

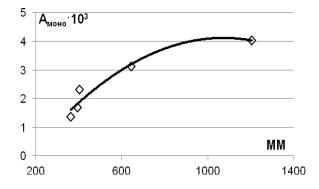


Рис. 3. Зависимость мономолекулярной адсорбции ЭО на поверхности дисперсного стеклянного наполнителя от ММ.

Используя полученные данные по $A_{\text{моно}}$, были рассчитаны коэффициенты заполнения поверхности (Θ) дисперсного наполнителя — стекла в мономолекулярном слое и количество адсорбционных слоев n (табл. 4), по формуле:

$$\Theta = A_{MOHO} / A_{MAKC} ,$$

где значение $A_{\text{макс}}$ рассчитано в предположении, что макромолекулы ЭО располагаются на поверхности в виде плотно упакованных сферо-

цилиндров (щетки) при кубической упаковке с коэффициентом упаковки равным 0.785.

Видно, что $A_{\text{моно}}$, как и в случае адсорбции на поверхности раздела вода-раствор ЭО, возрастает, а степень заполнения поверхности падает с ростом $\text{MM}_{\text{ср}}$ (уменьшением доли 1-й фракции). В то же время максимальное количество адсорбированного олигомера, напротив, при этом уменьшается.

 Таблица 4. Зависимость адсорбционных характеристик ЭО на поверхности дисперсного стеклянного наполнителя.

Эпоксидный олигомер марки	M_{cp}	$A_{{\scriptscriptstyle MOHO}}, \Gamma/{\scriptscriptstyle { m M}}^2$	$A_{\rm Maκc}$, Γ/ ${ m M}^2$	$arTheta_{\scriptscriptstyle MOHO}$	A_{cm} , $\Gamma/{ m M}^2$	n
DER-330	364	0.0024	0.0069	0.33	0.0332	6
ЭД-22	395	0.0028	0.0074	0.37	0.0250	4
ЭД-20	403	0.0030	0.0075	0.41	0.0179	3
ЭД-16	635	0.0032	0.0105	0.28	0.0178	2
ЭД-8	1257	0.0035	0.0175	0.19	0.0176	1

где A_{cm} — максимальная адсорбция на поверхности дисперсного наполнителя, n — соответствующее ей количество адсорбционных слоев.

Учитывая тот факт, что значения толщины адсорбционного слоя как на границе раздела вода—раствор ЭО, так и на поверхности дисперсного наполнителя, ниже, чем эти величины при максимальной адсорбции макромолекул, можно предположить, что молекулы ЭО в мономолекулярном слое ориентируются не перпендикулярно, а параллельно относительно поверхности.

Таким образом, термодинамически наиболее выгодной парой адсорбент—поверхность с точки зрения заполнении поверхности (до 41%) и взаимодействии с ней является эпоксидный олигомер ЭД-20 и ЭД-22, что следует учитывать при создании ПКМ на основе эпоксидных связующих.

ЛИТЕРАТУРА:

- 1. Берлин А.А., Басин В.Е. Основы адгезии полимеров. М.: Химия, 1974. 392 с.
- 2. Ребиндер П.А. Поверхностные явления в полимерах. Киев: Наукова думка, 1971. С. 3–4.
- 3. Липатов Ю.С., Сергеева Л.М. Адсорбция полимеров. Киев: Наукова думка, 1972. 200 с.
- 4. Липатов Ю.С. Межфазные явления в полимерах. Киев: Наукова думка, 1980. 260 с.
- 5. Зайцев Ю.С., Кочергин Ю.С., Пактер М.К. Эпоксидные олигомеры и клеевые композиции / Отв. ред. А.П. Греков. Киев: Наукова думка, 1990. 200 с.
 - 6. Рабинович А.Л. Механика армированных полимеров. М.: Наука, 1966. 252 с.
- 7. Пугачевич П.П., Бегляров Э.М., Лавыгин И.А. Поверхностные явления в полимерах. М.: Химия.. 1982. 200 с.
 - 8. Цветков В.Н. Жесткоцепные полимерные молекулы. Л.: Наука, 1986. 380 с.
- 9. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика: в 10-ти т. Т. 5. Статистическая физика. М.: Наука, 1976. Ч. 1. 576 с.
- 10. Комаров В.М. Направленное регулирование свойств олигомеров и композиций на их основе с помощью системного анализа конформационных характеристик макромолекул и дисперсности наполнителя: дис. ... д-ра физ.-мат. наук. М.: МИТХТ, 2004. 223 с.
- 11. Трофимов А.Н., Копытин В.С., Комаров В.М., Симакова Г.А., Симонов-Емельянов И.Д. Формирование граничных слоев в стеклопластиках на основе эпоксидных смол // Пластические массы. 2009. № 4. С. 16–20.
- 12. Вирасурия С., Симакова Г.А., Яковлева И.Н., Грицкова И.А. Влияние молекулярной массы полистирола на свойства адсорбционных межфазных слоев ПАВ // Коллоидный журнал. 1988. Т. 50. № 3. С. 562-566.