УДК 547.253+547.44+546.287

## ПРЕДКЕРАМИЧЕСКИЕ МОНОМЕРЫ ДЛЯ ПОЛУЧЕНИЯ НИТРИДА И КАРБОНИТРИДА КРЕМНИЯ МЕТОДАМИ ХИМИЧЕСКОГО ОСАЖДЕНИЯ ИЗ ГАЗОВОЙ ФАЗЫ

\*О.Г. Рыжова, начальник сектора, \*А.А. Григорьев, младший научный сотрудник, \*П.А. Стороженко, генеральный директор,

\*А.Н. Поливанов, заместитель директора, \*С.В. Жукова, младший научный сотрудник, \*Т.И. Шулятьева, старший научный сотрудник,

\*\*И.А. Тимофеев, начальник сектора, \*\*Е.А. Богачев, начальник отделения \*ФГУП ГНИИХТЭОС

\*\*OAO «Композит», г. Королев Московской обл. e-mail: alex.grigorev@bk.ru

три(N-метил)триметилциклотрисилазан (циклосилазан-1) и тетра(N-метил)тетраметилциклотетрасилазан (циклосилазан-2), являющиеся перспективными предкерамическими мономерами для получения окислительностойких материалов и формирования матриц композиционных материалов на основе нитрида, карбонитрида кремния методами химического осаждения из газовой фазы, были получены аминолизом метилдихлорсилана, выделены и охарактеризованы методами спектроскопии ЯМР <sup>1</sup>H, <sup>29</sup>Si и газожидкостной хроматографии. В результате проведенных исследований выявлены факторы, влияющие на направление реакции. В зависимости от природы растворителя реакция может быть направлена либо в сторону образования циклосилазана-1, либо циклосилазана-2. По своей эффективности, определенной как отношение циклосилазан-1/ циклосилазан-2, растворители могут быть расположены в последовательности: бензин «Галоша» > бензин «Галоша» + диэтиловый эфир (ДЭ) > бензин «Нефрас» + ДЭ > метиленхлорид + ДЭ > бензол.

Tris(N-methyl)trimethylcyclotrisilazane (cyclosilazane-1) and tetra(N-methyl)tetramethylcyclotetrasilazane (cyclosilazane -2), that are promising preceramic monomers for the production of oxygen-proof materials based on silicon carbonitride and nitride by CVD and CVI, were obtained through methyldichlorosilane aminolysis, isolated and characterized by <sup>1</sup>H, <sup>29</sup>Si NMR and gas-liquid chromatography. The conducted research resulted in the identification of factors effecting the reaction direction. According to solvent nature the reaction may be directed either towards cyclosilazane-1 formation or cyclosilazane-2 formation. In terms of efficiency, that is defined as cyclosilazane-1 to cyclosilazane-2 ratio, the solvents may be arranged in the following sequence: rubber solvent > rubber solvent + DE (diethyl ether) > nefras + DE > dichloromethane + DE > benzene.

**Ключевые слова:** метилдихлорсилан, аминолиз, три(N-метил)триметилциклотрисилазан, тетра(N-метил)тетраметилциклотетрасилазан, нитрид кремния, карбонитрид кремния, CVD/CVI.

Key words: methyldichlorosilane, aminolysis, tris(N-methyl)trimethylcyclosilazane, tetra(N-methyl)tetra-methylcyclotetrasilazane, silicon nitride, silicon carbonitride, CVD/CVI.

Повышенный интерес к нитридокремниевым материалам связан с их способностью лучше выдерживать термоциклические нагрузки и термоудар при сохранении равных механических свойств с карбидокремниевыми материалами.

Ранее нами было показано [1–3], что кремнийорганические соединения класса циклосилазанов, а именно три(*N*-метил)триметилциклотрисилазан (циклосилазан-1) и тетра(*N*-метил)тетраметилциклотетрасилазан (циклосилазан-2) являются перспективными предкерамическими мономерами для получения окислительностойких материалов и формирования матриц композиционных материалов на основе нитрида и карбонитрида кремния методами химического осаждения из газовой фазы (CVD/CVI).

Выбранные соединения отвечают основным требованиям, предъявляемым к таким предкерамическим мономерам: соотношение азот—кремний 1:1, температура кипения не выше 100°С при 1 мм рт. ст., отсутствие примесей хлоридионов [4].

Несмотря на большое количество работ, посвященных синтезу органогидридциклосила-

занов, промышленного способа получения таких соединений до сих пор не существует. Поэтому исследование особенностей процесса и свойств полученных органогидридциклосилазанов представляет не только научный, но и практический интерес.

Циклосилазан-1 и циклосилазан-2 были получены по реакции аминолиза метилдихлорсилана (МДХС).

Проведенные ранее исследования показали, что единого мнения о механизме процесса до сих пор не существует. Так, в работе [5] было установлено, что при аминолизе метилдихлорсилана в эфире в смеси присутствуют тример (28% мас.), тетрамер (54% мас.) и пентамер

(17% мас.), однако данных о выделении циклических соединений не приводится. В то же время авторы [6] считают, что при взаимодействии дихлорсилана с метиламином наряду с

циклосилазанами в результате раскрытия циклов образуются линейные органосилазаны в соответствии с ниже приведенной схемой реакции 1:

где х ~ 10.

При изучении реакции МДХС с метиламином в бензоле авторами работы [7] были выделены среди продуктов реакции, наряду с

циклосилазаном-1 и циклосилазаном-2, бис(метиламинометилсилил)метиламин в соотношении 6 : 4 : 1 соответственно (реакция 2).

$$9RHSiCl2 + 28MeNH2 \rightarrow [HMeNSiHR]2NMe + [RHSiNMe]3 + [RHSiNMe]4 + 18MeNH2·HCl \downarrow$$

$$R = Me$$
(2)

Так как исследования этого процесса с целью уточнения его механизма и выявления факторов, влияющих на направление реакции, проводились достаточно давно, представляло интерес изучить этот процесс методами спектроскопии ЯМР  $^{1}$ Н и  $^{29}$ Si, ИК-спектроскопии, газожидкостной хроматографии (ГЖХ), возможности которых за прошедшие годы существенно возросли.

Особенности процесса аминолиза МДХС изучали в среде бензина «Галоша» при осуществлении контроля за составом реакционной смеси с помощью ГЖХ на основных стадиях процесса, а именно: стадия 1 — получение «фильтрата» после аминолиза и стадия 2 — после отгонки растворителя от «фильтрата».

ГЖХ-анализ полученных реакционных смесей показал, что в хроматограммах наряду с пиками, соответствующими продуктам реакции, выделенными ранее [7], были зарегистрированы дополнительные пики, которые нами были отнесены к стереоизомерам [8] циклосилазана-1 и циклосилазана-2 (рис. 1).

В табл. 1 приведен состав реакционных смесей по данным ГЖХ на стадиях 1 и 2.

Приведенные в табл. 1 данные указывают на существование различий в составах реакционной смеси на стадиях 1 и 2. Так, после отгонки растворителя концентрация соединения (пик  $N \ge 1$ ) уменьшается в результате повышения сте-

пени замещения; отношение циклосилазан-1/ циклосилазан-2 увеличивается от 0.22 до 2.05. Характер изменений в составе реакционной смеси свидетельствует о преимущественном образовании на стадии 1 циклосилазана-2, которой при повышении температуры (стадия 2 — отгонка растворителя) превращается в циклосилазан-1. Циклотрисилазаны, по мнению авторов [9], термодинамически более устойчивы, в результате чего при повышении температуры высокомолекулярные циклосилазаны перегруппировываются в тримерные циклосилазаны.

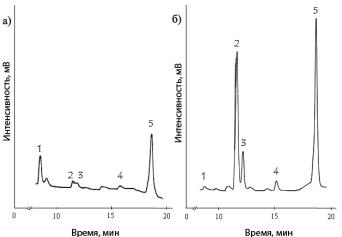



Рис. 1. ГЖХ-хроматограммы реакционных смесей: a — «фильтрат» после аминолиза МДХС (стадия 1);  $\delta$  — после отгонки растворителя от «фильтрата» (стадия 2).

Таблица 1. Состав основных продуктов в реакционных смесях в бензине «Галоша» по данным ГЖХ (% мас.).

| <b>№</b><br>пика | Соединение                                   | «Фильтрат» после<br>аминолиза МДХС<br>(стадия 1) | После отгонки бензина «Галоша» (стадия 2) |
|------------------|----------------------------------------------|--------------------------------------------------|-------------------------------------------|
| 1                | [HMeNSiHMe] <sub>2</sub> NMe                 | 0.5                                              | 0.22                                      |
| 2                | [HMeSiNMe] <sub>3</sub> <i>транс</i> -изомер | 0.14                                             | 31.36                                     |
| 3                | [HMeSiNMe] <sub>3</sub> <i>цис</i> -изомер   | 0.14                                             | 7.19                                      |
| 4                | Побочный продукт                             | 0.1                                              | 2.7                                       |
| 5                | [HMeSiNMe] <sub>4</sub>                      | 1.26                                             | 18.79                                     |
| Отно             | шение циклосилазан-1/ циклосилазан-2         | 0.22                                             | 2.05                                      |

Таблица 2. Содержание циклосилазана-1 и циклосилазана-2 в реакционных смесях в различных растворителях по данным ГЖХ (% мас.).

|                                          | «Фильтрат» после амино-<br>лиза МДХС (стадия 1) | После отгонки растворителя (стадия 2) |
|------------------------------------------|-------------------------------------------------|---------------------------------------|
| № 1. Бе                                  | ензин «Нефрас» + ДЭ                             |                                       |
| Циклосилазан-1                           | 5.29                                            | 38.42                                 |
| Циклосилазан-2                           | 8.55                                            | 51.99                                 |
| Отношение циклосилазан-1/ циклосилазан-2 | 0.62                                            | 0.738                                 |
| № 2. N                                   | Метиленхлорид + ДЭ                              |                                       |
| Циклосилазан-1                           | 1.60                                            | 30.90                                 |
| Циклосилазан-2                           | 2.00                                            | 43.10                                 |
| Отношение циклосилазан-1/ циклосилазан-2 | 0.80                                            | 0.717                                 |
| № 3. Бе                                  | ензин «Галоша» + ДЭ                             |                                       |
| Циклосилазан-1                           | 2.63                                            | 27.70                                 |
| Циклосилазан-2                           | 1.14                                            | 15.54                                 |
| Отношение циклосилазан-1/ циклосилазан-2 | 2.3                                             | 1.78                                  |
|                                          | № 4. Бензол                                     |                                       |
| Циклосилазан-1                           | 3.16                                            | 15.29                                 |
| Циклосилазан-2                           | 4.74                                            | 24.85                                 |
| Отношение циклосилазан-1/ циклосилазан-2 | 0.67                                            | 0.615                                 |
| № 5.                                     | Бензин «Галоша»                                 |                                       |
| Циклосилазан-1                           | 0.28                                            | 38.55                                 |
| Циклосилазан-2                           | 1.26                                            | 18.79                                 |
| Отношение циклосилазан-1/ циклосилазан-2 | 0.22                                            | 2.05                                  |

Для выявления зависимости направления реакции аминолиза МХДС, а, следовательно, и выхода циклосилазанов от природы растворителя были изучены методом ГЖХ реакционные смеси в следующих растворителях и их смесях с диэтиловым эфиром (ДЭ) (табл. 2):

- 1 бензин «Нефрас» и ДЭ;
- 2 метиленхлорид и ДЭ;
- 3 бензин «Галоша» и ДЭ;
- 4 бензол;
- 5 бензин «Галоша».

Введение в реакционную смесь ДЭ связано с тем, что из-за плохой растворимости метиламина в метиленхлориде экзотермическая реакция аминолиза МДХС проходила на поверхности, а не в объеме. Поэтому дальнейшие исследования проводили в смеси различных растворителей и ДЭ, в котором все реагенты и особенно метиламин хорошо растворяются. Из приведенных в табл. 2 данных видно, что природа растворителя влияет на состав реакционной смеси на стадиях 1 и 2. Так, на стадии 1 реакция может быть направлена в зависимости от природы растворителя либо в сторону образования циклосилазана-1 (растворитель — бензин «Галоша» + ДЭ), либо в сторону обра-

зования циклосилазана-2 (растворитель — бензин «Галоша»). После отгонки растворителя (стадия 2) содержание циклосилазана-1 увеличивается в смеси растворителей № 1, № 3, № 5 и уменьшается в смеси № 2, № 4.

По своей эффективности, определенной как отношение циклосилазан-1/циклосилазан-2 (стадия 2), растворители могут быть расположены в последовательности: бензин «Галоша» > бензин «Галоша» + ДЭ > бензин «Нефрас» + ДЭ > метиленхлорид + ДЭ > бензол.

Полученные циклосилазаны-1 и -2 были выделены и охарактеризованы методами спектроскопии ЯМР  $^{1}$ Н и  $^{29}$ Si в дейтерохлороформе и дейтеробензоле. В спектрах  $^{1}$ Н-ЯМР как в дейтерохлороформе (рис. 2), так и в дейтеробензоле (рис. 3, 4) регистрируются сигналы всех групп протонов циклосилазана-1 и циклосилазана-2:  $\underline{\text{CH}}_{3}$ HSi ( $\delta$  0.203–0.242 м.д.),  $\underline{\text{HCH}}_{3}$ Si ( $\delta$  4.807–4.846 м.д.),  $\underline{\text{CH}}_{3}$ N ( $\delta$  2.498–2.539 м.д.). На примере спектров  $\underline{\text{H}}^{1}$ -ЯМР циклосилазана-1 видно, что в отличие от дейтерохлороформа (рис. 2) дейтеробензол повышает информативность спектров, наложение сигналов фрагментов  $\underline{\text{CH}}_{3}$ HSi и  $\underline{\text{CH}}_{3}$ N *цис*- и *транс*-изомеров практически отсутствует (рис. 3).



Рис. 2. Спектр <sup>1</sup>H-ЯМР циклосилазана-1 в дейтерохлороформе.

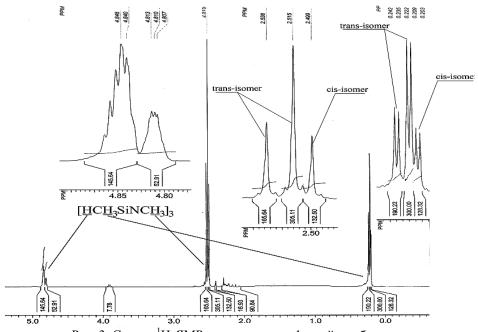
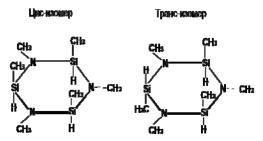
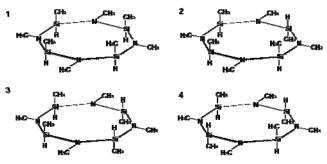





Рис. 3. Спектр <sup>1</sup>H-ЯМР циклосилазана-1 в дейтеробензоле.

По интегральным интенсивностям сигналов кремния в спектрах  $^{29}$ Si-ЯМР циклосилазана-1 (рис. 5) было определено соотношение *талс* и *цис*-стереоизомеров, равное 2.7 : 1. Для циклосилазана-2 в спектрах  $^{29}$ Si-ЯМР (рис. 6)

зарегистрированы сигналы кремния 4-х стереоизомеров. Соотношения стереоизомеров 1:2:3:4, определенные по данным спектров  $^{29}$ Si-ЯМР, составляют 1:2:34:2.55:1.95 соответственно:





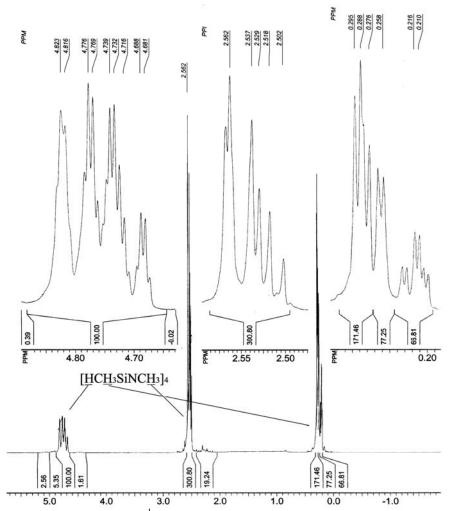



Рис. 4. Спектр  $^{1}$ Н-ЯМР циклосилазана-2 в дейтеробензоле.

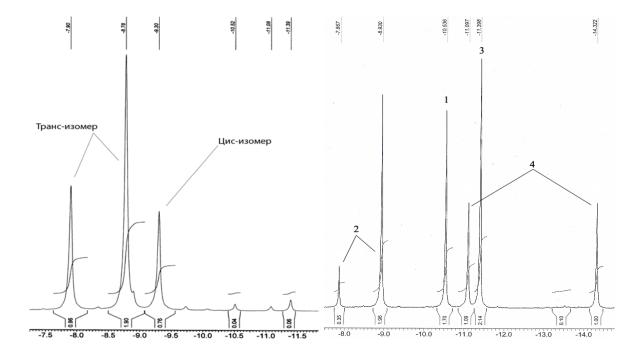



Рис. 5. Спектр ЯМР  $^{29}$ Si циклосилазана-1 в дейтеробензоле.

Рис. 6. Спектр ЯМР  $^{29}$ Si циклосилазана-2 в дейтеробензоле.

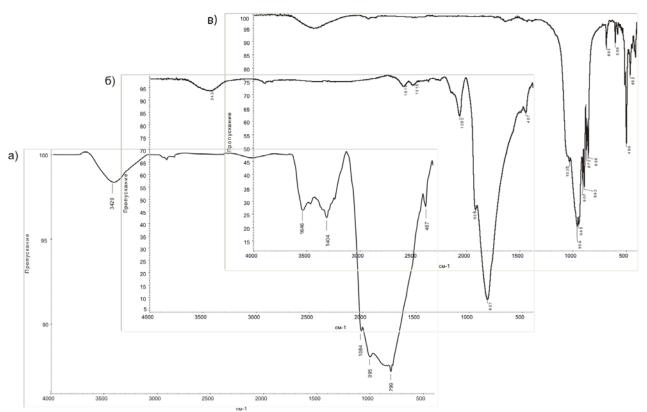



Рис. 7. ИК-спектры: порошок керамики, полученной пиролизом циклосилазана-1 в камере нанесения покрытия методом CVD/CVI (a); контрольный образец карбида кремния ( $\epsilon$ ); контрольный образец нитрида кремния ( $\epsilon$ ).

На примере циклосилазана-1 была показана возможность образования после пиролиза нитридокремниевой керамики методом химического осаждения из газовой фазы.

Для этого порошок керамики, полученный пиролизом циклосилазана-1 одновременно с нанесением покрытий методом CVD/CVI в вакууме при температуре 550–850°С, был исследован методом ИК-спектроскопии. ИК-спектр порошка керамики (рис. 7а) был сопоставлен со спектрами контрольных образцов карбида (рис. 7б) и нитрида кремния (рис. 7в). Наличие в ИК-спектре (рис. 7а) интенсивной широкой полосы поглощения в области 700–1200 см<sup>-1</sup> позволяет сделать вывод о том, что состав керамического покрытия может включать как нитрид, так и карбид кремния, так как их области полос поглощения перекрываются.

Таким образом, исследование процесса аминолиза метилдихлорсилана показало, что в зависимости от природы растворителя реакция может быть направлена либо в сторону образования циклосилазана-1, либо циклосилазана-2, которые являются перспективными предкерамическими мономерами для получения нитридокремниевой керамики методами химического осаждения из газовой фазы (CVD/CVI).

## Экспериментальная часть

Спектры ЯМР исследуемых образцов в дейтеробензоле регистрировали на приборе Bruker АМ-360 с рабочей частотой 360 МГц при T=303 К. Химические сдвиги приведены относительно сигнала остаточных протонов дейтеробензола в пересчете на тетраметилсилан.

ИК-спектры записывали на ИК-спектрометре «Specord» М-80.

Хроматограммы получали на хроматографе «Цвет-500» (сорбент — жидкая фаза 15% ПМС-20000 + твердый носитель хроматон NAW-MCS). Газ-носитель гелий. Длина колонки 2 м с диаметром 3 мм. Режим — программирование температуры термостата колонок  $T_{\text{нач.}} = 50^{\circ}\text{C}$ , скорость нагрева  $8^{\circ}\text{C}/$  мин,  $T_{\text{конеч.}} = 280^{\circ}\text{C}$ .

Три(N-метил)триметилциклотрисилазан и тетра(N-метил)тетраметилциклотетрасилазан получали по методике, приведенной в работе [7]:

В четырехгорлую колбу, снабженную мешалкой, термометром, обратным холодильником и барботажной трубкой для ввода амина, загружали 165 г метилдихлорсилана и 400 мл растворителя. Через полученный раствор пропускали газообразный метиламин со скоростью 1-1.5 л/мин. Температуру в колбе поддерживали в пределах 15-20°C охлаждением в бане со льдом. После введения расчетного количества метиламина реакционную массу отфильтровывали от осадка хлоргидрата метиламина (стадия 1). От полученного «фильтрата» отгоняли растворитель 2). Затем проводили выделение продуктов на ректификационной колонне.

## ЛИТЕРАТУРА:

- 1. Ryzhova O.G., Polivanov A.N., Timofeev I.A. Process for new composite material based on silicon nitride with high resistance to thermal-cycle load and thermal shock // Abstr. of the 4<sup>th</sup> Eur. Organosilicon Days. Bath, September 9–11, 2007. P-44. P. 204.
- 2. Ryzhova O.G., Polivanov A.N., Storozhenko P.A., Timofeev I.A. Precursors of silazanes class and methods of composites manufacture based on silicon nitride, silicon curbonitride // Abstr. of the 15<sup>th</sup> Int. Symp. on Organosilicon Chemistry. Jeju, Korea, August 1–6, 2008. P159. P. 191.
- 3. Рыжова О.Г., Григорьев А.А., Стороженко П.А., Поливанов А.Н., Жукова С.В. Исследование метилциклосилазанов методом спектроскопии ЯМР  $^{29}$ Si,  $^{1}$ H // Сб. тезисов докладов III молодежной научно-техн. конф. «Наукоемкие химические технологии-2009». Москва, 13–14 ноября 2009. С. 12.
- 4. Ryzhova O.G., Pankov K.A., Storozhenko P.A., Polivanov A.N., Timofeev I.A., Bogachev E.A. Preceramic monomers for coating on the basis of silicon nitride, produced by CVD method // Abstr. of the 5<sup>th</sup> Eur. Organosilicon Days. Vienna, September 2009. P. 184.
- 5. Yu Ga-Er., Parrick J., Edirisinghe M., Ralph B. Synthesis of silicon oxynitride from a polymeric precursor // J. Mater. Sci. 1994. V. 29. P. 1680–1685.
- 6. Seyferth D., Wiseman G. H. Polysilazane routes to silicon nitride // Polym. Prepr. 1984. V. 25. P. 10–12.
- 7. Семенова Е.А., Жинкин Д.Я., Андрианов К.А. Реакция диалкилдихлорсиланов и алкилдихлорсиланов с метиламином // Изв. АН СССР. Сер. хим. 1962. № 10. С. 2036—2039.
- 8. Потапов В.М. Стереохимия: учебн. пособие для вузов / 2-е изд., перераб. и доп. М.: Химия, 1988.464 с.
- 9. Жинкин Д.Я., Семенова Е.А., Соболевский М.В., Андрианов К.А. Превращение алкилцикло-силазанов при повышенных температурах // Элементоорган. соед. 1963. № 12. С. 16–17.