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he goal of this paper is to present a proof that for the logistic map 
1 ( ) (1 )n n n nx f x bx x     the period-3 

begins  at 1 2 2 . The third-iterate map 3( )f x  is the key for understanding the birth of the period-3 cycle. 

Any point x  in a period-3 cycle repeats every three iterates by definition. Such points satisfy the condition 
3( )x f x ,and they are therefore fixed points of the third-iterate map. This fact and the so called tangent 

bifurcation for the logistic map, as well as the fixed points definition, are used for finding the 1 2 2  value. The 
algebraic treatment utilizes some properties of symmetric polynomials in three variables. For the purposes of this 
paper, the bifurcation diagram for the logistic map is also presented, as well as a program in Mathematica for its 
construction. 
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Introduction 
 
Chaos and Dynamical Systems 
 
At the beginning of the 20th century, Henry 

Poincaré (1854-1912) discovered the possibility of 
chaotic motion in celestial mechanics problems. 
When studying the model of a bisolar system with 
just a planet, Poincaré indicated that system can 
developed motion with random characteristics, in 
spite of, it is governed by strict laws of 
newtonionan mechanics. 

In the biology field, are found species which 
population in a territory (birds in a forest, a bacteria 
that infest a human) tend to a normal level; in 
others in which the population varies each certain 
period (shortage and abundance time), and finally 
others, in which the number of individuals vary 
without a regular pattern. 

The Fluids present regular motion, in which the 
particles follow streamlines that separate slowly in 
a linear way in time. Besides, two particles that 
pass by the same point with a small interval in time 
follow the same streamline. However, either 
previous characteristics appear in what called 
turbulent flow, in which the particles that were near 
each other in a certain moment are quickly 
separated, in a exponential way in time. Their 
trajectories do not keep any relation in a short time, 
because of that it is said that they forget the initial 
conditions. 

The cited examples, belonging in appearance to 
different disciplines, remark an important fact: 
although being deterministic, present an 
unpredictable behavior. The exemplified systems 
are studied by the Dynamical System Theory where 
the chaos emerges. A dynamical system involves 
two components: (1) The notion of state, i.e., 
essential information about the system; (2) A 

dynamics, i.e., a rule that describes the evolution of 
the system state in time. The deterministic classical 
dynamical systems are grouped in two categories: 
(a) the discrete, in which one or more variables 
take values in discrete periods of time. From a 
mathematical point of view, they are called maps. 
A typical example of this situation could be the 
number of individuals of a biological specie in a 
specific territory; (b) the continuous, in which the 
variables are functions of time that obey to 
differential equations, such a pendulum subject to a 
force that varies periodically in time. From a 
mathematical point of view, they are called vector 
fields. 

One of the most surprising results of physics in 
the last 40 years, is the verification that most of 
classical deterministic dynamical system present 
complex motions when time increases, and makes 
them unpredictable about their final state. These 
kind of system are called turbulents, chaotics and 
stochastics. The main characteristic of a chaotic 
system is its sensibility to small variation in the 
initial conditions. Starting from two proximate 
states and letting the system evolves in time, after 
certain period of time the two trajectories followed 
by system do not look like each other. It is said that 
the system forgets the initial conditions or that it 
does not has memory of the past. In others words, 
in a chaotic system a small change in the present, 
causes bigger change in the future. 

The regular and chaotic behavior of dynamical 
systems reveals a probabilistic vision of the world, 
in which causal deterministic chains are linked and 
end when all the information about their initial state 
is completely destroyed. In this way, order and 
chaos, determinism and probabilities get together 
and complement each other, having as result a 
complex world full of possibilities than the cold 
mechanist vision. 
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1. The logistic map 
 
The logistic map is a formula for 

approximating the evolution of an animal 
population over time. Many animal species are 
fertile only for a brief period during the year and 
the young are born in a particular season so that by 
the time they are ready to eat solid food it will be 
plentiful. For this reason, the system might be 
better described by a discrete difference equation 
that a continuous differential equation. Since not 
every existing animal will reproduce (a portion of 
them are male after all), not every female will be 
fertile, not every conception will be successful, and 
not every pregnancy will be successfully carried 
out to term; the population increase will be some 
fraction of the present population. Therefore, if nx  

is the number of animals this year and 1nx   is the 

number the next year, then 

1n nx bx  , (1) 

where b  is the growth rate or fecundity, will 
approximate the evolution of the population. 
However, this model produces an exponential 
growth without limit. Since every population is 
bound by the physical limitations of its 
surrounding, some allowance must be made to 
restrict this growth. If there is a carrying-capacity 
of the environment then the population may not 
exceed that capacity. If it does, the population 
would become extinct. This can be modeled by 
multiplying the population by a number that 
approaches zero as the population approaches its 
limit. If the nx  is normalized to this capacity, then 

the multiplier (1 )nx  will suffice and the resulting 

logistic map becomes  

1 (1 )n n nx bx x   . (2) 

For analyzing the map (2), the 
restrictions 0 4b  ,  0,1x  will be used for 

that map, maps the interval x  into itself. 
As it was said, the main characteristic of a 

chaotic system is its sensibility to small variation in 
the initial conditions. Starting from two proximate 
states and letting the system evolves in time, after 
certain period of time the two trajectories followed 

by system do not look like each other. This is 
exemplified for the logistic map in Figure 1, where 
the trajectories corresponding to seeds 0 0.2x  , 

and 0 0.205x   
for 3.8b  , are quite different, 

when n  increases. 
 

 
 

Fig. 1. Two solutions of 1 (1 )n n nx bx x   , 3.8b  , 

0 0.2x  , 0 0.205x  . 

 
 

The long-term behavior for all values of b  at 
once, is shown in the Figure 2, known as 
bifurcation diagram, a magnificent picture that has 
become an icon of nonlinear dynamics. The Figure 
2 plots the system's attractor as a function of b  
for3 4b  . To generate the bifurcation diagram, 
it is necessary to write a computer program with 
two loops. First, choose a value of b . Then 
generate an orbit starting from some random initial 
condition 0x . Iterate for 1000 cycles or so, to allow 

the system settle down its eventual behavior. Once 
the transient have decayed, plot many points, say 

1001 1500, ,x x  above that b . Then move to an 

adjacent value of b  and repeat, eventually 
sweeping across the whole picture. The author used 
the following Mathematica program for drawing 
the bifurcation diagram. The program allows the 
reader to change the b  interval. 

 
f[b_, x_]:=b x (1-x) 
IterMap[b_, x_,n_]:=Module[{x0,y0,li},x0=x;li={{0,x0}};For[i=1,i<=n,i++,y0=f[b,x0];x0=y0; 
li=Append[li,{i,x0}]];li] 
Bifurcation[li_List,x0_,n1_,n2_]:=Module[{r,graf,m,i,li1,li2},m=Length[li];graf={}; 
Do[r=li[[i]];li1=NestList[IterMap,{r,x0},n1+n2];li2=Take[li1,{n2,n1}];graf=Append[graf,li2],{i,m}]; 
ListPlot[Flatten[graf,1],AxesLabel->{"b", "x"}]]; 
li=Table[3.4+ .00160 i,{i,350}];Bifurcation[li,.2,600,300]; 
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Fig. 2. Bifurcation diagram for 1 (1 )n n nx bx x   . 

 
 
The Figure 2 shows the most important part of 

the diagram, in the region3.4 4b  . At b =3.4, 
the attractor is a period-2 cycle, as indicated by the 
two branches. As b  increases, both branches split 
simultaneously, yielding a period-4 cycle. A 
cascade of further period-doublings occurs as b 
increases, yielding period-8, period-16, and so on, 
until at 3.57b b  , the map becomes chaotic 

and the attractor changes from a finite to infinite set 
of points. 

For b b  the bifurcation diagram reveals an 

unexpected mixture of order and chaos, with 
periodic windows interspersed between chaotic 
clouds of points. The large window beginning near 

3.83b   contains a stable period-3 cycle. 
 
2. Algebraic treatment of period-3 cycle 
 
The key for obtaining that the period-3 begins 

at 1 2 2b   , is the third-iterate map 3( )f x . 

Any point x  in a period-3 cycle repeats every three 
iterates, by definition, so such points satisfy 

3( )x f x  and are fixed points of the third-iterate  

map. These fixed points cannot be obtained 
explicitly because 3( )f x  is an eight-degree 

polynomial. However a graph provides sufficient 
insight. The intersection between the graph and the 
diagonal line correspond to solutions of 3( )x f x , 

as shown in Figure 3. 

 

 
Fig. 3. Graph of 3( )f x  versus x  for 3.835b  . 

 
 
Now decreases b  toward chaotic regime.  

Then the graph in Figure 3 changes its shape: The 
hills move down and the valleys rise up. The Figure 
4 shows that when b 3.8 , the intersections with 
the diagonal have vanished. Hence, for some inter-
mediate value between b 3.8  and 3.835b  , the 

graph of 3( )f x  must have become tangent to the 

diagonal. At this critical value of b , the stable and 
unstable peridod-3 cycles coalesce and annihilate in 
a tangent bifurcation. This transition defines the 
birth of the period-3 cycle. 

 



Вестник МИТХТ, 2012, т. 7, № 3 
 

74 

 
Fig. 4. Graph of 3( )f x  versus x  for 3.8b  . 

 
 

Proposition 1  (The Birth of Period-3 Cycle). In the logistic map, the period-3 begins at 1 2 2  

Proof: Let 1 2 3, ,x x x  be the fixed points of 3( )f x . The tangent condition means that the derivative 

of 3( )f x  at the fixed points must be 1. By chain rule, this derivative is the product 1 2 3( ) ( ) ( )f x f x f x   . 

Since '( ) (1 2 )f x b x  , then 1 2 3(1 2 )(1 2 )(1 2 ) 1b x x x    . After performing operations, the 

following result follows: 
3

1 2 3 1 2 1 3 2 3 1 2 3(1 2( ) 4( ) 8 ) 1.b x x x x x x x x x x x x         (3) 

Let 1 1 2 3s x x x   , 2 1 2 1 3 2 3s x x x x x x    and 3 1 2 3s x x x . The expressions 1 2 3, ,s s s  are called 

fundamental symmetric polynomials. With these variables change, the tangent condition becomes: 
3

1 2 3(1 2 4 8 ) 1 0b s s s     .    (4) 

From fixed points definition, the following equations are obtained: 
2

1 1 2( )b x x x  , 2 2
2

3( )b x x x  ,  3 3
2

1( )b x x x  . (5) 

By summing equations (5), it is obtained 
2 2 2

1 2 3 1 2 3 1 2 3(( ) ( ))b x x x x x x x x x        .     (6) 

Now 
2 2 2 2

1 2 3 1 2 3 1 2 1 3 2 3( ) ( ) 2( )x x x x x x x x x x x x        .   (7) 

This means that 
2 2 2 2
1 2 3 1 22x x x s s    .   (8) 

Then, the Equation (6) can be written as   
2

1 1 2 1( 2 )b s s s s   .       (9) 

Solving for 2s
 

2
1 1

2

(1 )

2

s b bs
s

b

 
 .     (10) 

By multiplying equations (5), the following equation becomes   
3 2 2 2

1 1 2 2 3 3 1 2 3( )( )( )b x x x x x x x x x       (11) 

The result of these operations is 
3 2 2 2 2 2 2 2 2 2 2

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3( ( ) )b x x x x x x x x x x x x x x x x x x x x x x x x      

= 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 3 2 3( ( ) ( )b x x x x x x x x x x x x x x x x x x      2

1 2 3 1 2 3( ) )x x x x x x  .           
(12) 
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In new variables, after cancelling common factor 1 2 3x x x , the Equation (12) is 
3

1 2 3(1 ) 1b s s s    .  (13) 

Solving for 3s  
3 3

2 1
3 3

(1 ) 1b s b s
s

b

  
 . (14) 

Now, by multiplying the first equation of equations (5) by 1x , the second by 2x  and the third by  3x  

and summing, it is obtained 
2 2 2 3 3 3
1 2 3 1 2 3 1 2 1 3 2 3(( ) ( ))b x x x x x x x x x x x x        . (15) 

It is easy to show that      
3 3 3 3
1 2 3 1 2 3 1 2 3 1 2 1 3 2 3 1 2 3( ) 3( )( ) 3x x x x x x x x x x x x x x x x x x           =     

= 3
1 1 2 33 3s s s s  . 

(16) 

By plugging (8) and (16) into (15), this equation becomes 
2 3
1 2 1 1 2 3 2( 2 3 3 ) 0b s s s s s s s      .  (17) 

The Equation (17) defines a relation between 1s andb , because 2s and 3s  are functions of b  and 1s . 

Now this relation will be obtained and analyzed.  
By replacing equations (10) and (14) into Equation (17), and after simplifications, this equation 

follows 

3 2
1 1 1 2

1 11 3
(1 3 ) ( 2 ) ( 3 ) 0

2 2 2

b b
s b s s b

b b
         .    (18) 

This equation can be factored as follows 
2 2 2 2

1 1 1
2

(3 3 )(2 2 2 ( 3 ) )
0

2

b bs b b b b s b s

b

      
 .    (19) 

The roots of Equation (19) are 

11

3
3s

b
  ,

2 2

12 2

3 2 7

2

b b b b b
s

b

   
 ,   

2 2

13 2

3 2 7

2

b b b b b
s

b

   
 . (20) 

Now, the roots 11s , 12s and 13s will be analyzed by using Equation (3) (tangent condition). As a function of 

1s  andb , this equation is 
3 2 2 3 3

1 12 (2 8 ) 7 7 0b s b b s b     . (21) 

By replacing 11s  into (21), it is obtained 
3 2 26 12 7 ( 1)( 5 7) 0b b b b b b        . (22) 

The roots of this equation are 

1 2 31, (5 3) / 2, (5 3) / 2b b i b i     .    (23) 

All of these roots must be discarded because there are two imaginary roots and the real 
root 1b 1 3.8  .  

Since 1s  must be real, 12s  and 13s  must be also real (see equations (20)). This means that 
2 2 7 0b b   . (24) 

The roots of this equation are 

11 121 2 2, 1 2 2b b    . (25) 

Then, 1 12 13s s s  ,  i.e., 
2

1 2

3 3 1

2 2

b b b
s

b b

 
  .   (26) 

Since 12 1 2 2 3.8b    , this root must be discarded. By replacing (26) into first member of 

Equation (21), it is obtained 2 33 4 14,b b b   and plugging 1 2 2b    into this expression, it follows 

that 
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2 33(1 2 2) 4(1 2 2) (1 2 2) 14 3 6 2 4 16 2 32 1 6 2 24 16 2 14               
39-25-14=0  

This means that the tangent bifurcation is satisfied by 1 2 2b   . Therefore, the b  value at which 

the period-3 cycle begins is 1 2 2.b    Now, the proof of Proposition 1 is complete. 

With this value ofb , now it is possible to find the 1 2 3, ,s s s  values from equations (10), (14) and 

(26). These values are: 

1 2 3=1.63060193748187 , s =0.7270901428157046, s =0.07866692728074915s  

From definition of 1 2 3, ,s s s , it is possible to find 1 2 3, ,x x x  by solving the following equations 

system: 

1 2 3

1 2 1 3 2 3

1 2 3

1.63060193748187 

0.7270901428157046

0.07866692728074915

x x x

x x x x x x

x x x

  
  


 (27) 

For solving the system (27), the author used the following Mathematica program that implements de 
Newton's method. 

x[x1_,x2_,x3_,n_]:=Module[{f1,f2,f3,i,m,s1,s2,s3,u,v,x01,x02,x03}, 
s1=1.63060193748187; s2=0.7270901428157046; s3=0.07866692728074915; 
x01=x1; x02=x2; x03= x3; 
For[i=1,i <=n,i++,f1=x01+x02+x03-s1;f2=x01 x02+x01 x03+x02 x03-s2; 
f3=x01 x02 x03-s3; m={{1,1,1},{x02+ x03, x01 +x03,x01+ x02}, 
{x02 x03,x01 x03, x01 x02}}; v={f1,f2,f3}; 
u=LinearSolve[m,v]; y1=x01-u[[1]];y2=x02-u[[2]]; 
y3=x03-u[[3]]; x01=y1; x02=y2; x03=y3]; {x01,x02,x03}]; 
x[.5, .9,.15,15] 
The result is: 

1 2 30.5143552770619904,  0.9563178419736228, 0.1599288184462569x x x   . 

By replacing these values into equations (5) it is easy to show that they satisfy those equations, and 
they represent the x  values at which the period-3 cycle, in the logistic map, begins. 
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