УДК 678.067.5

ВЛИЯНИЕ МОДИФИКАТОРОВ НА РЕОЛОГИЧЕСКИЕ СВОЙСТВА ХЛОРСОДЕРЖАЩЕГО ЭПОКСИДНОГО ОЛИГОМЕРА

А.Ю. Зарубина, аспирант, К.С. Пахомов, аспирант, *Ю.В. Антипов, главный химик, И.Д. Симонов-Емельянов, заведующий кафедрой

кафедра Химии и технологии переработки пластмасс и полимерных композитов *Центральный научно-исследовательский институт специального машиностроения (ЦНИИСМ), Хотьково, Московская область e-mail: zaroubina@vandex.ru

Сследовано влияние низковязкого эпоксидного олигомера DER-330, активного разбавителя ДЭГ-1, жидкого отвердителя изо-МТГФА и температуры на реологические свойства хлорсодержащего эпоксидного олигомера марки ЭХД. Установлено, что, вводя модификаторы и изменяя температуру от 40 до 60°С, вязкость хлорсодержащего эпоксидного олигомера можно варьировать в широких пределах от 0.1 до 60 Па·с.

The influence of the low-viscosity epoxy resin DER-330, the reactive solvent DEG-1, the liquid hardener iso-MTHPA, and temperature on the rheological properties of a chlorine-containing epoxy resin of ECD brand was studied. It was established that introducing modifiers and varying temperature from 40 to 60 °C enables varying the viscosity of the chlorine-containing epoxy oligomer in a wide range: from 0.1 to 60 Pa c.

Ключевые слова: эпоксидные олигомеры, активный разбавитель, модификаторы, отвердитель, вязкость.

Key words: epoxy resin, reactive solvent, modifiers, hardener, viscosity.

Уникальные технологические и эксплуатационные свойства эпоксидных олигомеров (ЭО) предопределили их использование в качестве связующих и матриц для полимерных композиционных материалов (ПКМ) различного назначения: армированные конструкционные пластики, клеи, замазки, покрытия и др.

Из проблемных задач следует выделить повышение температуры стеклования и соответственно теплостойкости и температуры эксплуатации ПКМ, которая достигается путем использования ЭО с жесткой молекулярной структурой, однако при этом существенно повышается вязкость (η), ухудшается смачивание, пропитка и технология переработки [1–4].

Для регулирования комплекса эксплуатационных характеристик высоковязких ЭО применяют жидкие низковязкие олигомеры, отвердители и различные модификаторы [4–9]. К сожалению, в этих работах мало внимания уделяется изучению реологических свойств эпоксидных олигомеров при их модификации низковязкими олигомерами и активными

разбавителями, хотя их изучение представляет актуальную задачу при организации и выборе технологических параметров процесса пропитки волокнистых наполнителей.

В данной работе исследовали реологические свойства высоковязкого хлор-содержащего ЭО (ТУ 2225-607-11131395-2003), ЭХД обеспечивающего пониженную горючесть, высокую влаго- и теплостойкость полимерной матрицы, который модифицировали низковязким олигомером – диановый ЭО марки DER-330 (Dow Chemical) с молекулярной массой 364 и содержанием низкомолекулярной фракции 91 масс. %. В качестве компонетов полимерной композиции применяли модификатор – активный разбавитель - алифатический ЭО марки ДЭГ-1 (ТУ 2225-027-00203306-97) и жидкий отвердитель – изо-метилтетрагидрофталевый ангидрид (изо-МТГФА) с вязкостью 0.03-0.1 Пас при

Химические формулы исходных компонентов приведены ниже:

ЭО марки ЭХД

$$\begin{array}{c} O \\ O \\ H_2C - CH - CH_2 \\ \\ H_2C - CH - CH_2 \\ \\ \end{array}$$

$$\begin{array}{c} CI \\ CH_2 - CH - CH_2 \\ \\ \\ \end{array}$$

$$\begin{array}{c} CI \\ CH_2 - CH - CH_2 \\ \\ \end{array}$$

Диановый ЭО марки DER-330

Активный разбавитель алифатический ЭО марки ДЭГ-1 (диэтиленгликоль)

Отвердитель ангидридного типа – изо-МТГФА

С целью снижения вязкости связующего на основе хлорсодержащего ЭО вводили низковязкий ЭО марки DER-330 и активный разбавитель ДЭГ-1 в количестве 10, 20, 30 мас. %, жидкий отвердитель изо-МТГФА из расчета 0.85 моль на эпоксидный эквивалент. При увеличении содержания DER-330 и ДЭГ-1, как

правило, снижается температура стеклования и теплостойкость, прочность и модуль упругости и другие свойства ПКМ, что требует оптимизации состава полимерного связующего [1–4].

Основные характеристики исходных компонентов олигомерного связующего приведены в табл. 1.

Таблица 1. Основные характеристики исходных компонентов

	$\mathrm{MM}_{\mathrm{cp}}$	Содержание, масс. %					
Компонент		эпоксидных групп	гидроксильных групп	летучих	иона	омыляемого	
				веществ,	хлора,	хлора,	
				не более	не более	не более	
ЭХД	610-650	26.2 - 30.0	0.8-1.2	1.0	0.035	1.7	
DER-330	352-370	23.2-24.4	0.1-0.2	-	-	-	
ДЭГ-1	240-260	25-26	4.5-5	1.5	0.04	1.4	

Для изучения влияния низковязкого ЭО, жидкого активного разбавителя и отвердителя, а также температуры на реологические свойства высоковязкого хлорсодержащего ЭО был выбран метод вискозиметрии. Исследования проводили на вискозиметре Brookfield DV-II+PRO [10, 11] при постоянных скоростях сдвига в температурном интервале 40-70°С. Выбор температуры обусловлен тем, что при 40°С эпоксидный олигомер ЭХД приобретает способность к течению, а технологический процесс пропитки волокнистого наполнителя связующим на основе ЭХД в промышленности ведут при температурах не более 70°С.

На рис. 1 приведены зависимости вязкости ЭХД, DER-330 [12] и их смесей от температуры. Видно, что значения вязкости эпоксидных олигомеров при 40°С различаются до 60 раз, и с повышением температуры до 70°С это различие становится значительно меньшим. Наибольшее снижение вязкости ЭХД и ее смесей с DER-330 достигается при повышении температуры на 10-20°С – в 4-10 раз от начального значения вязкости ЭХД (рис. 1).

Реологические зависимости для композиций ЭХД+ДЭГ-1 от температуры имеют аналогичную форму кривых, и вязкость меняется в 7.5-11 раз от начального значения (табл. 2). Необходимо отметить, что при температурах более 60°С вязкость для ЭХД+DER-330 изменяется в очень узком интервале (от 1.6 до 4.2 Па·с, а для

ЭХД+ДЭГ-1 — от 0.35 до 1.8 Па·с) и мало зависит от состава композиций. При введении низковязкого ЭО марки DER-330 (до 30 масс. %) вязкость уменьшается в 1.8-2.5 раза, а минимальное значение вязкости для смеси ЭХД+DER-330 составляет 1.6 Па·с (при 30 масс. % и T=70°C).

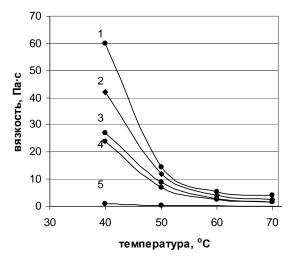


Рис 1. Зависимость вязкости ЭХД, DER-330 и смесей ЭХД + DER-330 от температуры при разном содержании DER-330. 1-0 мас. %, 2-10 мас. %, 3-20 мас. %; 4-30мас.% и 5-100 мас. % .

На рис. 2 приведены зависимости вязкости ЭХД от содержания активного разбавителя марки ДЭГ-1 при разных температурах. Наибольшее снижение вязкости наблюдается при низких температурах (40-50°С). При добавлении ДЭГ-1 в количестве 10 мас. % в хлорсодержащий ЭО вязкость снижается в 3.5 раза, а при дальнейшем увеличении концентрации до 30 масс. % в 15-30 раз. Повышение температуры более 60°С заметно снижает этот эффект. Введение DER-330 оказывает меньшее влияние на снижение вязкости ЭХД по сравнению с ДЭГ-1. Достаточно низкой вязкости эпоксидного связующего, необходимой для проведения процесса пропитки, можно достичь при введении ДЭГ-1 в количестве 20-30 мас. % при 60°С и 10-20 мас. % при 70°С.

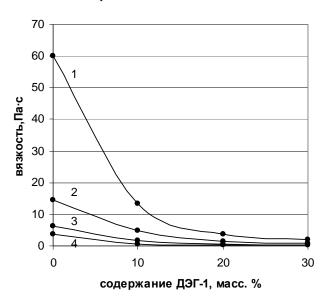


Рис. 2. Зависимость вязкости системы ЭХД + ДЭГ-1 от содержания ДЭГ-1 и температуры. $1-40^{\circ}\text{C}, 2-50^{\circ}\text{C}, 3-60^{\circ}\text{C}$ и $4-70^{\circ}\text{C}$.

В полулогарифмических координатах (рис. 3) все зависимости вязкости ЭХД от содержания низковязких модификаторов и ЭО адекватно описываются формулой:

 $\lg \eta_{\text{см}} = \varphi_1 \lg \eta_1 + \varphi_2 \lg \eta_2$, где $\eta_{\text{см}}$, η_1 , и η_2 — вязкость смеси, эпоксидного хлорсодержащего олигомера ЭХД и низковязкого ЭО — DER-330 и активного растворителя —

ДЭГ-1 соответственно; ϕ_1 , ϕ_2 — содержание исходных компонентов в смеси (масс. д.).

Аналогичные данные были ранее получены для смесей диановых ЭО с различными молекулярными массами и ММР [13].

Введение в высоковязкие ЭО жидких низковязких отвердителей также приводит на начальных стадиях процесса переработки к снижению вязкости системы. Для снижения вязкости и температуры переработки композиций на основе ЭХД в связующее вводили жидкий отвердитель изо - МТГФА в количестве 48 мас.%. Композиция достигает низкой вязкости – 0.6Па·с уже при 40°С, а с повышением температуры до 60°С значение вязкости снижается до 0.1 Па·с, что способствует повышению качества пропитки волокнистых наполнителей.

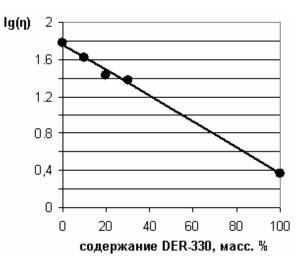


Рис. 3. Зависимость логарифма вязкости смесей ЭХД + DER-330 при 40°C от состава.

В состав эпоксидного связующего с жидким отвердителем можно вводить другие более вязкие добавки для улучшения физико-химических, физико-механических и других свойств полимерной матрицы без существенного повышения его вязкости.

Для различных систем на основе ЭХД были определены значения энергии активации $(E_{a\kappa})$ вязкого течения (табл. 2).

Таблица 2. Вязкость и эне	ргия активании процесса	течения ЭХЛ	[+ молификатор
racinique. Busicers il sile	ртин активации процесса	To remin Orig	, modifolitatop

	Вязкость (Па с)	Вязкость ЭХД + модификатор (Па с) при содержании, мас. %					
Температура, °С	ЭХД без	DER-330			ДЭГ-1		
	модификаторов	10	20	30	10	20	30
40	60	42	27	24	13.5	3.6	1.92
50	14.5	12	8.7	6.9	4.8	1.5	0.85
60	5.3	4.2	2.8	2.5	1.8	0.65	0.41
Еак, кДж/моль	108	105	98	98	87	74	67

Установлено, что при введении низковязкого DER-330 в количестве 30 мас. % в высоковязкий ЭО марки ЭХД вязкость композиции при 60° С снижается с 5.3 до 2.5 Па·с, а при ДЭГ-1 (до 30 масс. %) – с 6.3 до

 $0.41~\Pi a \cdot c$ и при введении изо-МТГФА (48 масс. %) с $0.6~\text{до}~0.1\Pi a \cdot c$.

Особенности организации технологического процесса пропитки волокнистых наполнителей требуют снижения вязкости эпоксидного

связующего на основе хлорсодержащего ЭО марки ЭХД до величины 0.5-1.0 Па с. Проведенные исследования показали, что наиболее эффективное снижение вязкости достигается при введении жидкого низковязкого отвердителя изо-МТГФА. Использование для ЭХД модификаторов (ДЭГ-1 и DER-330) в количестве 10-20 мас. % также способствует снижению вязкости и позволяет регулировать технологические и эксплуатационные свойства эпоксидных связующих.

Из полученных реологических данных следует, что технологический процесс пропитки волокнистых наполнителей полимерными связующими на основе модифицированной хлор-содержащей ЭХД необходимо вести при 60°С и достаточно низких значениях вязкости, что позволяет получать ПКМ с пористостью не более 2%.

Предложены оптимальные составы полимерных связующих с низкой вязкостью на основе высоковязкого хлорсодержащего эпоксидного олигомера марки ЭХД с жидким отвердителем изо - МТГФА: ЭХД + 10 мас. % ДЭГ-1, ЭХД + до 30 мас. % DER-330. Снижение вязкости полимерного связующего на основе ЭХД приводит к снижению угла и улучшению смачивания, например, стеклянных волокон, при получении изделий из стеклопластиков методом намотки.

Таким образом, получение эпоксидных связующих на основе высоковязкой ЭХД с регулируемыми технологическими и эксплуатационными характеристиками предполагает использование жидкого низковязкого отвердителя – изо-МТГФА и модификаторов – низковязкого ЭО (DER-330) и активного разбавителя – алифатического ЭО марки ДЭГ-1, взятых в оптимальном соотношении.

ЛИТЕРАТУРА:

- 1. Коршак В.В. Термостойкие полимеры. М.: Наука, 1969. 411 с.
- 2. Чернин И.З., Смехов Ф.М., Жердев Ю.В. Эпоксидные полимеры и композиции. М.: Химия, 1982. 232 с.
- 3. Туисов А.Г., Белоусов А.М. Исследование влияния модификатора эпоксидного связующего для стеклопластиков активным разбавителем ДЭГ-1 // Ползуновский вестник. 2007. № 4. С. 186—190.
- 4. Morell M., Erber M., Ramis X., Ferrando F., Voit B., Serra A. New epoxy thermossets modified hyperbranched poly (ester-amide) of different molecular weight // European Polymer Journal. 2010. № 46. C. 1498–1509.
- 5. Зайцев Ю.С., Кочергин Ю.С., Пактер М.К., Кучер Р.В. Эпоксидные олигомеры и клеевые композиции. Киев: Наук. Думка, 1990. 200 с.
- 6. Кочнова З.А., Жаворонок Е.С., Чалых А.Е. Эпоксидные смолы и отвердители: промышленные продукты. М.: Пэйнт-Медиа, 2006. 200 с.
- 7. Хозин В. Г. Усиление эпоксидных олигомеров. Казань: Изд-во ПИК «Дом печати», 2004. 446 с.
- 8. Белых А.Г., Ситников П.А., Васенева И.Н. Разработка новых эпоксиполимерных композиционных материалов с повышенными эксплутационными характеристиками // Институт химии Коми НЦ УрО РАН. Ежегодник, 2009. С. 47–50.
- 9. Татаринцева О.С., Ходакова Н.Н., Ильясов С.Г. Разработка тепло- и водостойкого связующего для базальтопластика. // Ползуновский вестник. 2008. № 3. С. 223–227.
- 10. Малкин А.Я., Чалых А.Е. Диффузия и вязкость полимеров. Методы измерения. М.: Химия, 1979. 304 с.
- 11. Малкин А.Я., Исаев А.И. Реология: концепции, методы, приложения. СПб.: Профессия, 2007. 560 с.
- 12. Суриков П.В., Трофимов А.Н., Кохан Е.И., Симонов-Емельянов И.Д., Щеулова Л.К. Влияние молекулярной массы и молекулярно-массового распределения на реологические свойства эпоксидных олигомеров // Вестник МИТХТ. 2009. Т.4. № 5. С. 87–90.
- 13. Суриков П.В., Трофимов А.Н., Кохан Е.И., Симонов-Емельянов И.Д., Щеулова Л.К., Кандырин Л.Б. Влияние молекулярных характеристик эпоксидных олигомеров и их смесей на реологические свойства // Пластические массы. 2009. № 9. С. 3–7.