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Distillation diagrams play an important role in 

creation of technological systems for separation of 

multicomponent nonideal mixtures by distillation. That 

diagram of distillation allows us to set the limit 

composition of product flows obtained in the 

distillation column, and on this basis to go to the 

synthesis of process flowsheet [1–3]. 

This diagram represents a phase portrait for 

corresponding dynamical system of distillation 

process. The structure of the phase portrait is defined 

by the type of singular points (pure components and 

azeotropes) and by the character of their location in the 

concentration simplex. Thus in the concentration 

simplex appear distillation areas, filled with single 

beam of paths – set of trajectories with common 

starting and ending point of the special type – unstable 

and stable nods. The distillation lines that make up the 

beam can be divided into two classes: those that have a 

neighborhood that is fully owned by this beam, called 

the internal distillation lines, the rest – the boundary 

distillation lines. The set of boundary lines of the beam 

are the boundary of distillation region. 

In the case of ternary mixtures each of the 

distillation boundary line is the boundary of the region 

of distillation. In concentration spaces with more 

higher dimensional, the set of these lines form the 

separation surface of the distillation region. 

The problem of constructing the boundary lines of 

distillation is relevant and, in this regard, a number of 

papers have been proposed numerical procedures for the 

localization of areas of distillation [4–8]. However, these 

procedures are very cumbersome, requires a large 

amount of calculation, and at the same time, the justice 

provisions, on which they are based, are not strictly 

proved. In return for the construction of distillation 

boundaries, we offer a simpler and more reliable way. 

To solve this problem we use the method of 

constructing the separatrix line represented in [9].  

A merit of the method is that the dynamical system 
of equilibrium distillation process, carried out at 

constant pressure ( .P const ) 

/ ,d X d Y X    (1) 

where  1 2, , , NX x x x   – composition of the liquid, 

mol fractions;  1 2, , , NY y y y   – composition of the 

vapor; N – the number of substances that form a 

mixture; ln M  , M – the number of moles of 

liquid phase, linearized in the neighborhood of the 

singular point  1, 2, ,, , ,S S S N SX x x x  , which is in 

accordance with the V. T. Zharov theorem [1], can be 

either a node or a saddle, we get a system of linear 

differential equations 

/ ,Dd d B    (2) 

where  1 2, , , N     , ,i i i Sx x   , 

  ,  /D ij ij i i j P const
B b b y x x


      – the coefficient 

matrix of the linearized system. 

Let’s consider the local geometry of the phase 

trajectories are of course common in the neighborhood 

of stationary points  det 0DB   , where BD – matrix of 

coefficients of the linearized in the neighborhood of 

stationary point of a dynamical system of distillation. 

Since this is a dynamical system of distillation, the 

stationary point can be either a node or a saddle. 

Obviously, in a dynamic system, which has a fixed 

point XS, all the trajectories (in the case of a node) or 

separatrix (in the case of the saddle) are adjacent to XS 

and, as supplemented by a stationary point, are tangent 

in certain directions. 

For greater clarity, we consider a dynamical 

system of second order. In this case, at any regular 

point X at time t is the slope of the tangent will be 

equal to 

 / ,i j D
dx dx   (3) 

and in stationary point 

 lim / .i j Dt
dx dx


   (4) 

It is possible to show that directions (4) coincide 

with the eigenvectors of the Jacobian matrix of the 

right sides of the dynamical system. 

If we consider the matrix BD, as the matrix of the 

corresponding linear operator realizing the 

T 
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transformation of a linear space, the eigenvector of BD 

is a vector 0v


 which satisfies the equation 

,DB v v
 (5) 

where  – eigenvalue of BD. 

As can be seen from equation (5), an eigenvector 

v


 under the action of the matrix does not change 

direction, and experiences only tensile or compressive. 

Column vector of coordinates of the eigenvector 

(the origin moved to a point XS), 

1 2

( )
( ) ( ) ( ), ,...,

N

Ti
i i i       corresponding to the eigen-

value i in the general case of N-dimensional phase 

space can be found solving the system of homogeneous 

linear equations 

 
( )

0.
i

D iB E    (6) 

We denote ( )i

iB E A  , and then the system of 

N homogeneous linear equations with N variables can 

be written as 

( ) ( )

1

0,  1,..., .
N

i i

jk k

k

a j N


   (7) 

This system has a nontrivial solution if and only if 

 ( )det 0.iA   In this case, the equation system (7) is 

linearly dependent. Denote r = rankA
(i)

. In the 

particular case r = N – 1. Let the first N – 1 equations 

of (7) are linearly independent, then system (5) can be 

replaced by an equivalent system 

( ) ( )

1

0,  1,..., 1.
N

i i

jk k

k

a j N


    (8) 

We denote the coefficient matrix of these system 
( )iA . The matrix 

( )iA  is obtained from matrix 
( )iA  by 

deleting from it the last line. 

Then the solution of this system (8) can be written 

as 

   

 

1 1 2 1( ) ( )

1 1 2 2

1 ( )

1 ,  1 ,  ... ,

 1 ,

i i

i i

N i

Ni N

M c M c

M c

 



 



   

 

 (9)  

where ( )i

jM  – is the minor obtained by deleting from 

the matrix ( )iA  of the j-th column; c – arbitrary 

constant. 

Thus uniquely determined only by the relationship 

   

 

( ) ( ) ( )

1 1( ) ( )

( ) ( )

/

1 / 1

1 / ,

i i i

jk j k

j ki i

j k

j k i i

j k

M M

M M

 

 



  

  



 (10) 

As an example, consider a two-dimensional case N = 2, 

corresponding to a ternary mixture. In this case, the 

system of equations (7) takes the form 

 

 

( ) ( )

11 1 12 2

( ) ( )

21 1 22 2

0,

0.

i i

i

i i

i

b b

b b

  

  

  

  
 

(11) 

The corresponding matrix 
( )iA  

11 12( )

21 22

.
ii

i

b b
A

b b









 (12) 

 

Analogue of the system of equations (8) in this 

case is a single equation 

  ( ) ( )

11 1 12 2 0.i i

ib b    
 

(13)
 

For the system (13), consisting of a single 

equation, the matrix 
( )iA  has the form 

( )

11 12 .i

iA b b 
 

(14)
 

From the expression (14) 
( ) ( )

1 12 2 11,   .i i

iM b M b     (15) 

The solution of equation (13), taking into account 

the relations (15) and (9), can be written as
  

 

   

1 1( ) ( )

1 1 12

1 2( ) ( )

2 2 11

1 ,

1 .

i i

i i

i

M c b c

M c b c



 





  

    

 
(16)

 

So in the special case where N = 2 we can use 

formula (16) to determine the slopes of the 

eigenvectors (eigenvalues directions): 

 

 

 

 

(1) (1) (1)

21 2 1 11 1 12

1 11 12

(2) (2) (2)

21 2 1 11 2 12

2 11 12

/ /

/ ,

/ /

/ .

b b

b b

b b

b b

  



  



     



     



 (17) 

 

For a saddle singular point equations (15) establish 

the directions in which the separatrix pairs tend to it or 

leave it. 

Information about eigenvalues directions in the 

singular saddle point allows us to construct the 

separatrix without iterations and with sufficient 

accuracy. To do this, take the initial point X0 in a small 

neighborhood of the saddle XC along direction of the 

eigenvector. In view of the relations which are valid in 

the neighborhood of the stationary point of XS 

 ;   0;   1,...,S S

i k k kx x i N      (18)
 

and equations (17) we have: 

 ( ) ( ) ( ) ( ) ( )

0 0 .i i i i i

k kC kj j jCx x x x    (19) 

The distance between X0 and XC should be chosen 

so as to satisfy the condition 

( ) ( ) 2

0

1

( ) 0.01 mol.frac.
N

i i

k kC

k

x x


 
  

 
  (20) 

 

Constructing the separatrix (separation manifold) is 

carried out by numerical integration from the saddle 

points along their eigenvectors in the direction of 

adjacent stable or unstable node. 

Now consider the more expressions for the 

derivatives, which are elements of the matrix DB . It is 

known that at low pressures (≤ 1,5 at) and in the 

absence of vapor phase chemical reactions and 

molecular association can be considered ideal mixture. 

In this case in the conditions of phase equilibrium the 

relation  

 0 ,  1, ,i i i iPy P T x i N    (21) 

will be true. 

From equation (21) it follows  

 0

,  1, , .
i i i

i

P T x
y i N

P


    (22) 
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Taken in to account this fact, the system of 

equations (1) we can be rewritten in the form 

   

    

0

0

1
,

1
, , , ,  1, , .

i

i i

i i i

i i i i

dx
y x

d

P T T X P x
P

f P T T X x i N
P







  

  
 

 

 (23) 

 

As the external pressure P is constant, the elements 

of the matrix 
DB  can be written as 

 
 

 
 

   

 
 

0

0
,

,

0

0

, ,

,

1
,

,

,  ,

, 1, , ,

k j

k j

i

i

ij i
i

j P x
i

P X

ij i i

i

i i

j
P T x

P T
T X

T
T

b x T XP x
P T

T

P T T X P

T X
x P T

x

i j N





 







  
  

   
  

  
  
   

   
  





 


 

 (24) 

 

where ij  – Kronecker delta: 

 

1,  if  ,

0,  if  .

ij

ij

ij

i j

i j






 
 

   

To calculate the derivative  0

iP T

T




 using extended 

Antoine equation in the form 

 
 

 0
/

exp  kPa ,
ln i

i i i

i F

i i

A B C T
P T

D T E T

   
  

  

 
(25) 

In this paper, the calculation of the activity 

coefficients of the components of the liquid phase was 

carried out using the equation NRTL 

   

1

1

1

1

1 1

ln

,

/ , K ;  exp .

N

ji j ji

j

i N

k ki

k

N

mj m mjN
j ij m

ijN N
j

k kj k kj

k k

ji ij ij ij ij ji

x G

x G

x G
x G

x G x G

a b T G c









 









 

 

 
 
  
 
 
 

   







 

 

(26) 

 

The derivatives  

,

,i

P X

T X

T





and  

, ,

,

k j

i

j
P T x

T X

x







may be 

found from the equation (26). 

The calculation of the derivative jxP kxj

T





, , 

presented in the right side of equation (24), carry out, 

taking into account that the distillation pressure is 

constant: 

   0

1

, .
N

k k k

k

P P T T X x const


   (27) 

From this relation it follows 

   

   

0

1

0

1
,

,

, 0.

m j m j

m j

N

k k k

kj jXx x

N

k k k

kj T

P T
P T T X x

x T x

P T T X x
x





 







   
  

   

  
  
  





 
(28) 

 

Express the derivative 

, k j
j P x

T

x






 from the relation (28): 

   

 
   

0

1
,

0
,

0

1

,

.

,

m j

m j

N
k

k kj k k

k j T x

j NP x k k

k k k

k

X

P T T X x
x

T

x T X P T
x P T

T T


 












 
 

 
  

 
    

   
 





 
(29) 

It should be noted that when taking the derivative 

of the activity coefficient and the temperature on the 

concentrations, the latter acting as the independent 

variables. However, concentrations expressed in mole 

or mass fractions, add up to one, hence independent of 

them can only be (N – 1). We choose as independent 

variables the first (N – 1) concentrations. In this case 

 1 2 1, , ,N N Nx x x x x   . Taking into account the 

relation 

1

1.
N

k

k

x


  (30) 

 

we shall have 

1.

k N

N

j x

x

x


 
    

 (31) 

 

Therefore, the derivatives can be written as 

ˆ,

,,

,,

.

k j

k Nk j k N

k Nk j

i

j T x

i i N

j N jT xT x x

i i

j N T xT x

x

x

x x x

x x



 

 



 








  
  

  

 


 

 
(32) 

Similarly 

ˆ

.

k Nk j k j
j j N xx x

T T T

x x x
 

  
 

  

 
(33) 

 

Now we explain the conditions under which the 

partial derivatives are taken. Subscript for the partial 

derivative , k jT x   indicates that the derivatives are 

taken at constant temperature and constant concen-

tration of all substances, except substances with the 

number j. Subscript ˆ, k jT x   denotes, that in addition to a 

constant temperature, the concentrations of first (n – 1) 

substances remain constant, except the concentration of 

the substance to the number j. 

Based on the considerations made by us, (32) and 
(33) can be conveniently written as 

,, ,

,

k Nm j k j

i i i

j j N T xT x T x
x x x

  

 

  
 

  

 
(34) 
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.

k Nm j k j
j j N xx x

T T T

x x x
 

  
 

  

 (35) 

 

Where the index m changes from 1 to (n – 1) and 

appropriate to independent concentration the total 

number of which is equal to (n – 1). At the same time, 

the index k varies from 1 to N, and corresponds to the 

concentration of any of the substances, the total 

number of which is N. 

The following is the algorithm used in this paper 

for localization and construction of separation 

manifolds of the distillation diagrams in ternary 

systems. 

Background information: a mixture, the pressure, 

the NRTL and extended Antoine equation coefficients . 

To find singular points. To do this, it is necessary 

to solve the nonlinear system 

/ 0.d X d Y X     (36) 

This is a nonlinear equation system of second 

order, which is solved using both equilibrium relation 

and the NRTL equation, means Newton method. 

Linearization of the dynamical system given by 

Eq. (1) in each singular point. The linearized 

dynamical system is:  

/ ,Dd d B    (37) 

The elements of DB , the Jacobian matrix of the 

system, are calculated analytically means both equi-

librium relation (1) and the NRTL model given by 

equations (25)–(26). For each singular point, the 

Jacobian matrix is calculated (see equations (27)–(35)). 

Once the dynamical system is linearized, the next 

step is to find the eigenvalues and eigenvectors for 

each singular point. To do this, for each singular point 

their eigenvalues ( 1,2i  )  are calculated by solving the 

equation:  

.0)det( DB  (38) 

Since the analyzed dynamical system is for a 

distillation process, the critical points can be either a 

node or a saddle [1].  Case 1: Both eigenvalues are 

positive. This is the point reached as   tends to   , 

and is where all residue curves in a given region 

terminate. Thus, it is the pure component or azeotrope 

with the highest boiling point in the region. This point 

is a stable node because it is like the low point of a 

valley, in which a rolling ball finds a stable position. 

Case 2: Both eigenvalues are negative. This is the 

point where all residue curves in a region originate, and 

is the pure component or azeotrope with the lowest 

boiling point in the region. This point is an unstable 

node because it is like the top of a mountain from 

which a ball rolls toward a stable position. Case 3. One 

eigenvalue is positive and one is negative. Residue 

curve maps within the triangle move toward and then 

away from such saddle point. For a given region, all 

pure components and azeotropes intermediate in 

boiling point between the stable node and the unstable 

node are saddles. The eigenvectors 
( )i

  ( 1,2)i   can 

be found solving the system of homogeneous linear 

equations 

 
( )

0,
i

D iB E    (39)
 

where E  is the identity matrix of second order. 

For each saddle: (a) For every eigenvector 

corresponding to a positive eigenvalue, integrate Eq. 

(1) backward in τ from the saddle(i) in a direction 

along the eigenvector and(ii) in a direction opposite to 

the eigenvector, omitting directions in the integration 

that point outside the composition space; (b). For each 

eigenvector corresponding to negative eigenvalue 

repeat the previous step, but integrate forward in τ. The 

integration procedure is started for cdoncentration 

value of the saddle point that is being considered and is 

stopped when the residue curve approaches any 

singular point (other than the one it started from) 

withtin a Euclidean distance given by Eq. (20). For 

each eigenvector direction of each saddle point the 

residue curve may connect a stable node or an unstable 

node, but no another saddle point (Peixoto’s Theorem 

[10, 11]), except when the two saddle points are 

located in the vertices of concentration triangle (in this 

cause the dimension of the space of concentration, 

which owns the separatrix, is unity). This kind of 

connection is a edge (of part of it) that is boundary of 

the adjoining distillation regions (separation manifolds) 

in which the concentration triangle is divided. If the 

saddle point is a binary azeotrope, one of its 

corresponding residue curve is a straight line that 

connects it with the nodes located in the vertices of the 

corresponding edge, that constitutes a boundary for the 

regions created by de saddle point, and this is because 

the direction of one of its eigenvectors coincides with 

the edge that connects the two singular points; the 

residue curve that corresponds to another eigenvector 

may connect either a stable or an unstable node. If the 

saddle point is a ternary azeotrope it may reaches an 

unstable node that also is interior or unstable o stable 

nodes locate in triangle vertices or edges (binary 

azeotrope). If a binary azeotrope is a stable or unstable 

node, it is connected by a straight line to the adjacent 

vertices of the concentration triangle. These lines are 

boundaries of two adjacent separation manifolds. If an 

unstable node is interior to the triangle it is reached by 

at least a saddle point or by a stable node.  If the saddle 

point is a vertex of the concentration triangle it is 

connected to other vertices by straight lines, because 

the directions of its eigenvectors coincide with the 

directions of the two sides.  In this form, the 

concentration triangle is divided in finitely many of 

different separation manifolds perfectly located and 

defined by their respective boundaries. A separation 

manifold contains a stable node, and unstable node and 

at least a saddle point. 

To construct the equilateral triangle of con-

centrations, display separation lines and boundary of 

triangle. This lines together form boundaries of 

distillation regions.  
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To construct some residue curve for each region 

means the usual procedure of integrating the dynamical 

system (1). 

The algorithm previously described was used for 

writing down a Matlab
®
 based program. This 

algorithm, and the program based on it was used to 

construct the boundaries of distillation 76 ternary 

mixtures. Here we present results of a study of some 

diagrams, namely the system Acetone–Chloroform–

Methanol, Dichloroethane–Trichloroethane–Propanol 

and Methylethylketone–Benzene–Isopropanol. Tables 

1–4 show the parameters of the ternary mixtures 

needed to build the corresponding distillation 

diagrams. 

 

Table 1. Parameters six parametric Antoine equation, see equation (25) 

 AC CLF MET DCLE TCLE PR MEK BNZ IPR 

Ai 71.3031 73.7058 59.8373 73.2566 93.2846 79.4625 73.6555 169.6500 83.6370 

Bi -5952.00 -6055.60 -6282.89 -6499.80 -7360.26 -8294.91 -6465.24 -10314.8 -8249.01 

Ci 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Di -8.5313 -8.9189 -6.37873 -8.7177 -11.7913 -8.9096 -8.7920 -23.5895 -9.5452 

Ei 7.82E-06 7.74E-06 47.6E-06 6.45E-06 9.08E-06 1.82E-06 6.90E-06 2.09E-05 2.00E-06 

Fi 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 

AC – Acetone; CLF – Chloroform; MET – Methanol; DCLE – Dichloroethane; TCLE – Trichlo-roethane; PR –

 Propanol; MEK– Methylet-hylketone; BNZ – Benzene; IPR – Isopropanol 

 

Table 2. NRTL equation parameters for the system Acetone (1)–Chloroform (2)–Methanol (3) 

 12 13 23 

aij 0.00 0.00 0.00 

aji 0.00 0.00 0.00 

bij 151.9297 149.1131 -67.6285 

bji -327.7751 59.4353 686.8933 

cij 0.3054 0.3003 0.2932 

cji 0.3054 0.3003 0.2932 

 
Table 3. NRTL equation parameters for system Dichloroethane (1)–Trichloroethane (2)–Propanol (3) 

 12 13 23 

aij 0.00 0.00 0.00 

aji 0.00 0.00 0.00 

bij 108.3451 132.8825 -28.1331 

bji 12.1599 328.3886 632.7492 

cij 0.3015 0.2971 0.2925 

cji 0.3015 0.2971 0.2925 

 
Table 4. NRTL equation parameters for systemMethylethylketone (1)–Benzene (2)–Isopropanol (3) 

 12 13 23 

aij 0.00 0.00 0.00 

aji 0.00 0.00 0.00 

bij 184.3350 -12.9325 166.8225 

bji -99.8608 170.2266 392.1955 

cij 0.3093 0.3017 0.2913 

cji 0. 3093 0. 3017 0. 2913 

 

Tables 5–7 present the report about the number of 

the singular points and their characterization given by 

program for each system. The characterization consists 

of: (a) type of singular point (stable node, unstable 

node and saddle point), (b) molar fraction of the 

singular point which indicates if the singular point is 

pure component, binary or ternary and (c) its 

temperature. 
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Table 5. Singular point report for system Acetone (1)–Chloroform (2)–Methanol (3),   P = 101.00 kPa 

№ x1, mol.f. x2, mol.f. x3, mol.f. T, ºC Point type 

1 1.000 0.000 0.000 55.99 Saddle 

2 0.421 0.579 0.000 63.88 Stable node 

3 0.000 1.000 0.000 61.11 Saddle 

4 0.790 0.000 0.210 55.15 Unstable node 

5 0.368 0.162 0.469 56.87 Saddle 

6 0.000 0.487 0.513 54.48 Unstable node 

7 0.000 0.000 1.000 64.40 Stable node 

Table 6. Singular point report for system Dichloroethane (1)–Trichloroethane (2)–Propanol (3),     P = 101.00 kPa 

№ x1, mol.f. x2, mol.f. x3, mol.f. T, ºC Point type 

1 1.000 0.000 0.000 83.32 Stable node 

2 0.680 0.320 0.000 82.20 Saddle 

3 0.000 1.000 0.000 86.97 Stable node 

4 0.543 0.221 0.236 80.65 Unstable node 

5 0.742 0.000 0.258 81.20 Saddle 

6 0.000 0.626 0.374 83.26 Saddle 

7 0.000 0.000 1.000 97.09 Stable node 
 

Table 7. Singular point report for system Methylethylketone(1)–Benzene(2)–Isopropanol (3),  P = 101.00 kPa 

№ x1, mol.f. x2, mol.f. x3, mol.f. T, ºC Point type 

1 1.000 0.000 0.000 79.63 Stable node 

2 0.461 0.539 0.000 77.77 Saddle 

3 0.000 1.000 0.000 78.68 Stable node 

4 0.626 0.000 0.374 78.04 Saddle 

5 0.000 0.556 0.444 71.14 Unstable node 

6 0.000 0.000 1.000 82.18 Stable node 

 

Figure 1 (a, b ,c) presents for each ternary system 

the separation manifolds with the respective 

boundaries as they are predicted by step 5 of the 

proposed algorithm. 

 
Figure 1. Distillation regions of three-component systems: a – Acetone (1)–Chloroform (2)–Methanol (3); 

b – Dichloroethane (1)–Trichloroethane (2)–Propanol (3);  

c – Methylethylketone(1)–Benzene(2)–Isopropanol(3). 
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The calculation shows (see Figure 1a) that in 

the ternary system Acetone (1)–Chloroform (2)–

Methanol (3) has seven critical points: pure 

components Acetone (1) and Chloroform (2) are 

saddles, while Methanol is a stable node; the binary 

azeotrope Acetone (1) –Chloroform (2) is a stable 

node; the binary azeotrope Chloroform (2)–

Methanol (3) is an unstable node; the binary 

azeotrope Acetone(1)–Chloroform (3) is an 

unstable node; the ternary azeotrope is a saddle. 

The ternary azeotrope is connected to the binary 

azeotropes and to the stable node Methanol (3). The 

connections are made in the increasing temperature. 

In this way, the ternary diagram for the system 

under study is divided in four manifolds perfectly 

located and defined by their respective boundaries 

as shown in Figure 1,a. Any separation manifold 

contains a stable node, and unstable node and at 

least a saddle point. The boundaries of distillation 

areas are ternary saddle separatrix together with the 

elements which locate of the boundary of the 

triangle diagram.  

The diagrams, shown in Figure 1b and 

Figure 1c, are interpreted in a similar way. In the 

ternary system Dichloroethane (1)–Trichloroethane 

(2)–Propanol (3), Figure 1b, three distillation areas 

have one a common point – ternary azeotrope, 

acting as an unstable node. Ternary system 

Methylethylketone (1)–Benzene (2)–Isopropanol 

(3), Figure 1c, also includes three distillation areas 

with the total singular point that is a binary 

azeotrope of benzene-isopropanol.  

On the diagrams shown in Figure 1, almost all 

of the separatrix are very nonlinear curves, 

however, the algorithm, presented in this paper, can 

reproduce them with a high degree of accuracy. The 

latter indicates the simplicity and reliability of the 

algorithm and the program that implements it. 
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