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Analytic solution of nonlinear Leybenson equation in the theory of filtration is obtained. 
Analytical solutions of the partial differential equations are presented in the explicit algebraic 
form. The integral surfaces in three dimensions are presented.
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1. Introduction

The theory of filtration is a branch of hydrody-
namics studying the motion of liquids through porous 
media, that is, through media penetrated by a system 
of intercommunicating void spaces. It is the practice 
to consider the motion of a liquid upon filtration as a 
certain effective continuous flow. So, filtrational flows 
formally have similarity to flows in pipes and channels, 
and terms of the theory of filtration coincide in many 
respects with the hydraulic terminology. Nevertheless, 
let us recall some definitions in the theory of filtration.

The mentioned porous media are called filtering or 
permeable. Some grounds (sands, sand clays and clay 
loams), construction materials (crushed stone, porous 
concrete and brickworks) can be examples of filtering 
media. The permeability of a porous medium is de-
termined experimentally. Aquiclude is ground almost 
not passing water. Clays are often waterproof, because 
their pores are closed and small. As for an impenetrable 
construction material, it is usually called damp-proof 
instead of water-proof. The theory of filtration in the 
context of construction, water supply and wastewater 
disposal considers regularities of water filtration for 
carrying out quantitative calculations, for example, 
when designing drainage systems (drainages) lowering 
the level of ground waters in order to protect under-
ground constructions and premises of buildings against 
flooding. A special role in ecology is played by the mo-
tion of moisture in the soil. The correct organization of 
irrigation in the motion of soil moisture is one of the 
most important tasks of the theory of filtration. Meth-
ods of the theory of filtration are used when solving the 
problem of ground waters protection from pollution by 
production wastes, fertilizers and other waste products 
of mankind. The main energy sources of the 20th centu-
ry – oil and gas – are produced from deeply lying un-
derground layers. Accumulation of oil and gas in these 

porous collector layers and the main technologies of 
extracting (producing) are governed by the laws of the 
theory of filtration.

Porosity ε is the most important quantitative char-
acteristic of porous bodies. It is defined as the volume 
fraction of a body occupied by pores, or the volume 
of pores in the volume unit of a material. This defini-
tion usually ignores closed isolated pores: it considers 
only interconnected open-ended pores. They form the 
pore space, a complex branched and irregular network 
of pores. The porosity of most materials ranges with-
in 0.1–0.4. The ability of a porous medium to pass a 
liquid is characterized by permeability. Its definition is 
closely related to the fundamental law of the motion 
of a liquid in a porous medium called Darcy’s law in 
honor of the French engineer Henri Darcy, who exper-
imentally established this law in 1856. In continuum 
mechanics, when studying the flow of liquids and gases 
in a porous medium in a gravitational field, the differ-
ential form of Darcy’s law is applied:

 ,                                             (1.1)

where p is external pressure; ρ is the fluid density; μ is 
its dynamic viscosity; g is acceleration of gravity; z is 
a vertical coordinate. In the equation (1.1) k is a propor-
tionality coefficient, which is a characteristic of the porous 
environment and does not depend on the sample size and 
the liquid properties. Darcy’s law is true at a slow flow 
of a liquid, i.e., at small Reynolds numbers. The theory of 
ground water motion deals only with water, the viscosity of 
which  Pa·s, and density ρ = 103  kg/m3. The classi-
cal theory of filtration discussed up to now deals with 
the flow of a uniform liquid in a porous medium. In 
most modern applications, however, it is necessary to 
consider non-uniform systems, multicomponent multi-
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phase mixes. Let’s mention only such applications of 
the theory of filtration as pollution of ground waters, 
migration of moisture in a soil layer and replacement 
of oil by stratal or artificially pumped water or gas (see 
[1–5]).

The foundations of the theory of gas flow in 
a porous medium were developed by the founder of 
the Soviet school of oil-and-gas hydromechanics L.S. 
Leybenson. He derived for the first time differential 
equations of non-stationary filtration of a perfect gas 
in a layer according to Darcy’s law. The nonlinear dif-
ferential equation derived by him was later referred to 
as Leybenson equation. Unlike hyperbolic Boussinesq 
equation, Leybenson equation is of the parabolic type. 
When deriving the latter equation, it was assumed that 
the porosity and permeability factors do not change 
with changing pressure (the layer is not deformed), the 
gas viscosity does not depend on pressure either, and 
the gas is perfect. It is usually assumed also that the 
gas filtration in the layer is isothermal, i.e., the gas and 

layer temperature remains constant.
The basic variant of one-dimensional non-station-

ary theory of filtration gives the following non-linear 
differential equation:

,                                                        (1.2)

Dependent variable h is usually called static head. 
In the Russian literature equation (1.2) is known also 
as a special case of Leybenson equation. Equation (1.2) 
appears, for example, in the theory of non-stationary 
one-dimensional filtration of soil water adjoining to 
some rectangular reservoir having the height of water 
level h = hmax at start time [3]. The permeable lateral 
surface of the reservoir is a source of the motion of the 
water spreading along axis x (see Fig. 1). Let’s present 
briefly the derivation of Leybenson equation, which 
will allow finding out at the same time the assumptions 
on which it was obtained.

Fig. 1. Illustration to the derivation of the one-dimensional non-stationary Leybenson equation.

Let us assume that the liquid contained in AB0C 
reservoir infiltrates into the soil in the direction . The 
liquid motion is considered to be one-dimensional. For 
this purpose it is assumed that elements AB and B0x   
are impenetrable for the liquid. It means, using the con-
ventional terminology, that a one-dimensional non-sta-
tionary ground free-flow with a horizontal aquiclude is 
considered. A similar assumption is widely used in the 
theory of radial gas flow to a well bore.

Neglecting the influence of the inertia terms upon 
the motion of the liquid along axis z we have

.                                                                                                   (1.3)

From (1.3) it follows that , and if  
, then . That is,

 ,                                                                                                   (1.4)

and Darcy’s law can be written as follows:

 .                                                                                            (1.5)

Les us introduce control volume   
as a vertical rectangular parallelepiped with height h 
and base area . For the direction x we have ve-
locity ,  and  the  flow  of matter through 

the lateral surface of the mentioned parallelepiped is

.                                                (1.6)

The mass of liquid qx comes to the parallelepiped 

in a unit time, and the mass  flows from it. 
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For the control volume containing an incompressible 
liquid we can write the mass balance per time unit.

 ,                                                                                                    (1.7)

or

.                                                                                           (1.8)

Equation (1.8) is the nonlinear one-dimensional 
non-stationary Leybenson equation written above in 
the form (1.2).

2. Leybenson equation and its analytical solution

The basic variant of one-dimensional non-station-
ary theory of filtration gives the following nonlinear 
differential equation (see (1.2)):

 ,                                                                                              (2.1)

or

 .                                                                              (2.2)

Let us reduce equation (2.2) to a dimensionless 
form using h = hmax as a scale, that is, , 

. Then

 ,                                                                                                      (2.3)

and equation (2.2) is reduced to the following dimen-
sionless form:

.                                                                                        (2.4)

In order to simplify the symbols, we shall omit the 
tilde sign in further transformations of equation (2.4). 
Let us seek for the solution of (2.4) in the form of a 
tripartite polynom with coefficients depending only on 
time. We have

.                                                                          (2.5)

In this case

 ,                                                                                 (2.6)

 ,                                                                                           (2.7)

.                                                                                                     (2.8)

Substitution with (2.6) – (2.8) in equation (2.5) 
gives

      (2.9)

or

.          (2.10)

Equation (2.10) is an identity that is true at all 
values of  . This is possible only under the following 
conditions:

 ,                                                                                                        (2.11)

 ,                                                                                                      (2.12)

 .                                                                                               (2.13)

Now let us solve the set of equations (2.11) – 
(2.13). Equation (2.11) is Bernoulli equation, which is 
easily integrated by substituting with :

   

or

 .                                                                                                  (2.14)

Equation (2.12) can be written now as

                                                                                            (2.15)

or

,                                                                            (2.16)

which gives the following solution:

 ;                                                                                                     (2.17)
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B and C are integration constants. Let us transform 
equation (2.13) using solutions (2.14) and (2.17). We 
have

 .                                                                          (2.18)

The solution of linear non-uniform differential 
equation (2.18) with variable coefficients is known and 
given by

,                                                            (2.19)

where

,                                                                                          (2.20)

or

.                                                                                          (2.21)

Using (2.19) and (2.21) gives

                                         (2.22)

or, after integration,

.                                                                     (2.23)

As a result of solving three ordinary differential 
equations (2.11) – (2.13) we obtained three integration 
constants, which are included into solution (2.5):

.                                      (2.24)

which can be written in the following form:

 .                         (2.25)

Note that at start time

,                                          (2.26)

and for the origin

.                                                                      (2.27)

Let us assume that   by the data. Then

                                                                                            (2.28)

and equation (2.25) takes the form

 .  (2.29)

In case of  

.            (2.30)

Constants B and C are determined by the specific 
flow conditions, kinetic coefficients and properties of 
the porous medium. Let us give the calculations carried 
out for various C and B combinations as examples (Fig. 
2 – 8). The determinative dimensionless parameters C 
and B in the presented results of mathematical model-
ing change by several orders of magnitude. The inte-
gral surfaces are constructed by means of the applied 
program pack Maple. The following, designations are 
used: , ,  .

Fig. 2. Integral surface  in case of  C = 0.1, B = 1. Fig. 3. Integral surface  in case of C = 1, B = 1.
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Fig. 4. Integral surface  in case of  C = 100, B = 1.

Fig. 6. Integral surface  in case of  C = 10, B = 10.

Fig. 8. Integral surface  in case of  C = 100, B = 100.

Fig. 5. Integral surface  in case of C = 1000, B = 1.

Fig. 7. Integral surface  in case of C = 100, B = 10.

It follows from the calculation:
1. A change in the determinative dimensionless 

parameters C and B can result in a radical rearrange-
ment of the flow (see, for example, Fig. 2 and 8).

2. The assumption that elements AB and B0x are 
impenetrable for the liquid (which is conventional in 
the theory of filtration) is introduced in order to use 

predeterminedly one-dimensional models. In this case 
the level height h ≥ 0. The appearance of negative level 
height values in the chosen coordinate system does not 
contradict the physical sense of the formulated prob-
lem. However, this indicates the necessity of solving 
multidimensional tasks. It is interesting to note that 
the possibility of the appearance of negative   values 
follows even from the one-dimensional non-stationary 
Leybenson equation (see Fig. 2, 3 and 6).

3. A change of parameter   considerably affects the 
size and liquid level h(x,t) with respect to the chosen 
coordinate system.

4. Choosing parameters C and B allows to consid-
er the initial distribution of height h(0,t) determining 
the further evolution of the system.

5. A change of parameter B (at fixed С) in the 
above calculations scarcely affects the system evolu-
tion. (Compare the calculations results shown in Fig. 
7 and 8.)

In conclusion, note that flows in porous materials 
are not only a research subject of the classical theory of 
filtration. Calculation of thermal protection coatings of 
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head parts of spacecrafts (in particular, reusable space 
systems of the Buran of Shuttle type) results in the ne-
cessity of finding self-consistent solutions of transfer 
equations for the cases of external non-viscous flow, 
the boundary layer of a reacting mixture of gases and 
a flow in the pores of a thermal protection coating, for 
example, graphite [6, 7].
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