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he theory of the charge – spin interaction in waves in the frame of non-local quantum hydrodynamics is 
considered. The electron charge inner structure is investigated using the non-local physical description. 
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In Schrödinger–Pauli quantum theory the 
electron can be theoretically considered as a bound 
state of chargon, spinon and orbiton. In particle 
physics, spin is an intrinsic form of angular 
momentum carried by elementary particles 
including electron. The orbiton is carrying the 
orbital degree of freedom and the chargon is 
carrying the charge. One of the often used models 
in condensed matter physics is the spin–charge 
separation in electrons in some materials in which 
they “split” into three independent particles, the 
spinon, orbiton and the chargon (or its antiparticle, 
the holon).  

Usually the theory of spin–charge separation 
originates with the work of Sin-Itiro Tomonaga 
who developed an approximate method for treating 
one-dimensional interacting quantum systems [1]. 
The aim of the article consists in consideration of 
the spin – charge separation and interaction from 
position of the non-local quantum hydrodynamics. 
The article is organized as follows. In the definite 
sense this paper can be considered as the 
prolongation of the article [2]. As result in 
Introduction (Section 1) the basic principles of 
generalized quantum hydrodynamics (GQH) 
created by me and expounded in particular in [3–8] 
are delivered in a brief form. As it was shown 
earlier the theory of transport processes (including 
quantum mechanics) can be applied in the frame of 
the unified theory based on the non-local physical 
description. In particular the generalized hydro-
dynamic equations represent an effective tool for 
solving problems in the very vast area of physical 
problems [9–12]. In Section 2 the system of non-
local quantum hydrodynamic equations is applied 
for investigation of the charge – spin waves 
investigations, taking as a case in point the waves 
in graphene. Section 3 contains the basic non-local 
equations in spherical coordinate system for 
description of a negative charged physical system 
placed in a bounded region of a space. Internal 
energy αε  of this one species object and a possible 
influence of the magnetic field are taken into 

account. In Section 4 is pointed out the important 
particular non-stationary one dimensional case 
corresponding to the negative charged system 
evolution in the potential electric field. The 
derivation of the angle relaxation equation is 
realized for the angle reflecting the possible 
deviation between a separated direction of the spin 
at the initial time moment and the direction of 
magnetic momentum after an external perturbation. 
Section 5 involves the mathematical modeling of 
the charge distribution in electron. 

 

1. Introduction. About the basic principles 
of the generalized quantum hydrodynamics 

 

Let us consider the transport processes in open 
dissipative systems and ideas of following 
transformation of generalized hydrodynamic 
description in quantum hydrodynamics which can 
be applied to the individual particle. 

The kinetic description is inevitably related to 
the system diagnostics. Such an element of 
diagnostics in the case of theoretical description in 
physical kinetics is the concept of the physically 
infinitely small volume ( )PhSV . The correlation 
between theoretical description and system 
diagnostics is well-known in physics. Suffice it to 
recall the part played by test charge in electrostatics 
or by test circuit in the physics of magnetic 
phenomena. The traditional definition of PhSV 
contains the statement to the effect that the PhSV 
contains a sufficient number of particles for 
introducing a statistical description; however, at the 
same time, the PhSV is much smaller than the 
volume V of the physical system under 
consideration; in a first approximation, this leads to 
the local approach in investigating of the transport 
processes. It is assumed in classical hydrodynamics 
that local thermodynamic equilibrium is first 
established within the PhSV, and only after that the 
transition occurs to global thermodynamic 
equilibrium if it is at all possible for the system 
under study. 

Let us consider the hydrodynamic description 
in more detail from this point of view. Assume that 

T 
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we have two neighboring physically infinitely 
small volumes 1PhSV  and 2PhSV  in a non-
equilibrium system. Even the point-like particles 
(starting after the last collision near the boundary 
between two mentioned volumes) can change the 
distribution functions in the neighboring volume. 
The adjusting of the particles dynamic charac-
teristics for translational degrees of freedom takes 
several collisions in the simplest case. As result, we 
have in the definite sense “the Knudsen layer” 
between these volumes. This fact unavoidably 
leads to fluctuations in mass and hence in other 
hydrodynamic quantities. Existence of such 
“Knudsen layers” is not connected with the choice 
of space nets and fully defined by the reduced 
description for ensemble of particles of finite 
diameters in the conceptual frame of open 
physically small volumes, therefore – with the 
chosen method of measurement. This entire 
complex of effects defines non-local effects in 
space and time.  

The physically infinitely small volume (PhSV) 
is an open thermodynamic system for any division 
of macroscopic system by a set of PhSVs. But the 
Boltzmann equation (BE) [3, 13, 14] 

 

,BJDtDf =  (1.1) 
 

where BJ  is the Boltzmann collision integral and 
DtD  is a substantive derivative, fully ignores non-

local effects and contains only the local collision 
integral BJ . The foregoing nonlocal effects are 
insignificant only in equilibrium systems, where 
the kinetic approach changes to methods of 
statistical mechanics. 

This is what the difficulties of classical 
Boltzmann physical kinetics arise from. Also a 
weak point of the classical Boltzmann kinetic 
theory is the treatment of the dynamic properties of 
interacting particles. On the one hand, as follows 
from the so-called “physical” derivation of BE, 
Boltzmann particles are regarded as material 
points; on the other hand, the collision integral in 
the BE leads to the emergence of collision cross 
sections. 

Notice that the application of the above 
principles also leads to the modification of the 
system of Maxwell equations. While the traditional 
formulation of this system does not involve the 
continuity equation, its derivation explicitly 
employs the equation 
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∂
∂

+
∂
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a

t
j

r
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 (1.2) 
 

where aρ  is the charge per unit volume, and aj  is 
the current density, both calculated without 
accounting for the fluctuations. As a result, the 
system of Maxwell equations written in the 
standard notation, namely: 
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сontains  
 

,fla ρρρ −= .fla jjj −=  (1.4) 
 

The flρ , flj  fluctuations calculated using the 
generalized Boltzmann equation are given, for 
example, in Ref. [4, 6, 8]. The violation of Bell’s 
inequalities [15] is found for local statistical 
theories, and the transition to non-local description 
is inevitable.  

The rigorous approach to derivation of kinetic 
equation relative to one-particle DF f ( fKE ) is 
based on employing the hierarchy of Bogoliubov 
equations. Generally speaking, the structure of 

fKE  is as follows: 
 

,nlB JJ
Dt
Df

+=  (1.5) 


where nlJ  is the non-local integral term. An 
approximation for the second collision integral is 
suggested by me in generalized Boltzmann physical 
kinetics, 
 

.





=

Dt
Df

Dt
DJ nl τ  (1.6) 

 

Here, τ  is non-local relaxation parameter, in 
the simplest case – the mean time between 
collisions of particles, which is related in a 
hydrodynamic approximation with dynamical 
viscosity µ  and pressure p, 

 

,µτ Π=p  (1.7) 
, 

where the factor Π  is defined by the model of 
collision of particles: for neutral hard-sphere gas, 
Π =0.8 [16, 17]. All of the known methods of the 
kinetic equation derivation relative to one-particle 
DF lead to approximation (1.6), including the 
method of many scales, the method of correlation 
functions, and the iteration method.  

In the general case, the parameter τ  is the non-
locality parameter; in quantum hydrodynamics, its 
magnitude is correlated with the “time-energy” 
uncertainty relation [9, 10]. 

Now we can turn our attention to the quantum 
hydrodynamic description of individual particles. 
The abstract of the classical Madelung’s paper [18] 
contains only one phrase: “It is shown that the 
Schrödinger equation for one-electron problems 
can be transformed into the form of hydrodynamic 
equations”. The following conclusion of principal 
significance can be done from the previous 
consideration [9, 10]: 
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1. Madelung’s quantum hydrodynamics is 
equivalent to the Schrödinger equation (SE) and 
leads to the description of the quantum particle 
evolution in the form of Euler equation and 
continuity equation. Quantum Euler equation 
contains additional potential of non-local origin 
which can be written for example in the Bohm 
form. 

2. SE is consequence of the Liouville 
equation as result of the local approximation of 
non-local equations. 

3. Generalized Boltzmann physical kinetics 
leads to the strict approximation of non-local 
effects in space and time and after going to the 
local approximation leads to parameter τ , which 
on the quantum level corresponds to the uncertainty 
principle “time-energy”. 

4. Generalized hydrodynamic equations 
(GHE) lead to SE as a deep particular case of the 
generalized Boltzmann physical kinetics and 
therefore of non-local hydrodynamics. 

In principle GHE needn’t in using of the “time-
energy” uncertainty relation for estimation of the 
value of the non-locality parameter τ . Moreover the 
“time-energy” uncertainty relation does not lead to 
the exact relations and from position of non-local 
physics is only the simplest estimation of the non-
local effects. Really, let us consider two 
neighboring physically infinitely small volumes 

1PhSV  and 2PhSV  in a non-equilibrium system. 
Obviously the time τ  should tends to diminishing 
with increasing of the velocities u  of particles 
invading in the nearest neighboring physically 
infinitely small volume ( 1PhSV  or 2PhSV ): 

 

.nuH=τ  (1.8) 
 

But the value τ  cannot depend on the velocity 
direction and naturally to tie τ  with the particle 
kinetic energy, then  

 

( ),2muH=τ  (1.9) 

where H  is a coefficient of proportionality, which 
reflects the state of physical system. In the simplest 
сase H  is equal to Plank constant   and relation 
(1.8) becomes compatible with the Heisenberg 
relation. Possible approximations of τ  – parameter 
in details in the monographs [8, 20, 21] are 
considered. But some remarks of the principal 
significance should be done.  

It is known that Ehrenfest adiabatic theorem is 
one of the most important and widely studied 
theorems in Schrödinger quantum mechanics. It 
states that if we have a slowly changing 
Hamiltonian that depends on time, and the system 
is prepared in one of the instantaneous eigenstates 
of the Hamiltonian then the state of the system at 
any time is given by an the instantaneous 
eigenfunction of the Hamiltonian up to 
multiplicative phase factors. 

The adiabatic theory can be naturally 
incorporated in generalized quantum hydro-
dynamics based on local approximations of non-
local terms. In the simplest case if Q∆  is the 
elementary heat quantity delivered for a system 
executing the transfer from one state (the 
corresponding time moment is int ) to the next one 
(the time moment et ) then  

 

( ),21 τδ
τ

TQ =∆  (1.10) 
 

where ine tt −=τ  and T  is the average kinetic 
energy. For adiabatic case Ehrenfest supposes that 
 

,...,2 21 ΩΩ=τT  (1.11) 
 

where ,..., 21 ΩΩ  are adiabatic invariants. 
Obviously for Plank’s oscillator (compare with 
(1.9)): 
 

.2 nhT =τ  (1.12) 
 

Then the adiabatic theorem and consequences 
of this theory deliver the general quantization 
conditions for non-local quantum hydrodynamics. 
 

2. Generalized quantum hydrodynamic equations 
 

Strict consideration leads to the following system of the generalized hydrodynamic equations (GHE) 
[4, 8] written in the generalized Euler form: 
continuity equation for speciesα : 

 

( ) ( ) ( )

,

I

0
)1(

00000

αα
α

α
αα

α
ααααα

α
αα

ρρ

∂
∂ρ

∂
∂ρ

∂
∂τρ

∂
∂ρ

∂
∂

∂
∂ρτρ

∂
∂

R
m
q

p
ttt

=









×−−

−⋅+





 ⋅+−⋅+














 ⋅+−

BvF

r
vv

r
vv

r
v

r



 (2.1) 

 

and continuity equation for mixture: 
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Momentum equation for species: 
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Generalized moment equation for mixture: 
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Energy equation for component: 
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and after summation the generalized energy equation for mixture: 
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(2.6) 

 

Here ( )1
αF  are the forces of the non-magnetic 

origin, B  – magnetic induction, I


 – unit tensor, 
αq  – charge of the α -component particle, αp  – 

static pressure for α -component, αε  – internal 
energy for the particles of α - component, 0v  – 
hydrodynamic velocity for mixture. For calcu-
lations in the self-consistent electro-magnetic field 
the system of non-local Maxwell equations should 
be added (see (1.3)). 

It is well known that basic Schrödinger 
equation (SE) of quantum mechanics firstly was 
introduced as a quantum mechanical postulate. The 
obvious next step should be done and was realized 
by E. Madelung in 1927 – the derivation of special 
hydrodynamic form of SE after introduction wave 
function Ψ  as: 

 

( ) ( ) ( ).,,,,,, ,,, tzyxietzyxtzyx βα=Ψ  (2.7) 
 

Using (2.7) and separating the real and imagine 
parts of SE one obtains: 
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and Eq. (2.8) immediately transforms in continuity 
equation if the identifications in the Madelung’s 
notations for density ρ  and velocity v  
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)./( mβ
r

v
∂
∂

=  (2.10) 
 

introduce in Eq. (2.8). Identification for velocity 
(2.10) is obvious because for 1D flow with const 
values kEp,  
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where φv  is phase velocity. The existence of the 

condition (2.10) means that the corresponding flow 
has potential: 
 

./ mβ=Φ  (2.12) 
 

As result two effective hydrodynamic 
equations take place: 

 

( ) ,0=⋅
∂
∂

+
∂
∂ v

r
ρρ

t
 (2.13) 

 

.
2

1
2
1 2

2









 ∆
−

∂
∂

−=
∂
∂

+
∂
∂

α
α

m
U

m
v

t


rr
v  (2.14) 

 

But: 
 

,1
2

2

22

2







∂
∂

−
∆

=
∆

r
α

αα

α
α
α  (2.15) 

 

and the relation (2.15) transforms (2.14) in 
particular case of the Euler motion equation: 
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where introduced the efficient potential: 
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Additive quantum part of potential can be 
written in the so called Bohm form: 
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Some remarks: 
a) SE transforms in hydrodynamic form 

without additional assumptions. But numerical 
methods of hydrodynamics are very good 
developed. As result at the end of seventieth of the 
last century we realized the systematic calculations 
of quantum problems using quantum hydro-
dynamics (see for example [3, 19].  

b) SE reduces to the system of continuity 
equation and the particular case of the Euler 
equation with the additional potential proportional 
to 2 . The physical sense and the origin of the 
Bohm potential are established later in [9, 10]. 

c) SE (obtained in the frame of the theory of 
classical complex variables) cannot contain the 
energy equation in principle. As result in many 
cases the palliative approach is used when for 
solution of dissipative quantum problems the 
classical hydrodynamics is used with the insertion 
of the additional Bohm potential in the system of 
hydrodynamic equations. 

d) The system of the generalized quantum 
hydrodynamic equations contains energy equation 
written for unknown dependent value which can be 
specified as quantum pressure αp  of non-local 
origin. 

e) In chemically reaction systems the internal 
energies αε  define the reactions heat Q. For 
example for bimolecular reaction dcba AAAA +→+  
the reaction heat badc εεεε −−+=Q . 

f) For so called “elementary particles” the 
internal energy can contain the spin and magnetic 
parts. For example, electron has the internal energy ε : 

 

,,, melspele εεε +=  (2.20) 
 

with the spin and magnetic parts, namely: 
 

,2/, ωε =spel ., Bpm ⋅−=melε  (2.21) 
 

mp  – electron magnetic moment, B  – magnetic 

induction. But cm
ep
e

m 2


−= , then effe ωε
2


= . 

The effective frequencies effω  can be altered in 

the process of the interaction with the surrounding 
environment. In this case the additional equations 
defining the change of the internal energies should 
be added to equations (2.1)–(2.6). Let us consider 
this situation in detail. I begin with case when the 
particle internal energy is constant. 

                                                                                                                               

After dividing the both sides of the continuity equation (2.1) by αm  and multiplying by αε  this 
equation takes the form: 
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In general case if const≠αε  equation (2.22) is the internal energy equation in which the right hand 

side of equation αα
α
ε R

m
1  transforms into function ( )αα εΕ . After subtraction of the both sides of 

equation (2.22) from the corresponding parts of equation (2.5) one obtains: 
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taking into account that: 
 

.,,

α

α
ααααααα εεε

m
RdJdJ inelstelst =+ ∫∫ vv  (2.24) 

 

Conclusion: In the case when the change of the 
species internal energies is absent as result of 
interaction with external media the solution of the 
full system of equations (2.1)–(2.6) can be reduced 
to the system (2.1)–(2.5), (2.23).  

It is interesting to confirm this conclusion by 
the direct numerical calculation. With this aim let 
us consider the charge density waves which are 
periodic modulation of the conduction electron 
density. The movement of the soliton waves in 
graphene was considered in the mentioned article 
[2]. I remind shortly the problem formulation. 

The effective charge is created due to 
interference of the induced electron waves and 
correlating potentials as result of the polarized 
modulation of atomic positions. Therefore in this 
approach the conduction in graphene convoys the 
transfer of the positive (+е, pm ) and negative (-е, em ) 
charges. Let us formulate the problem in detail. The 
non-stationary 1D motion of the combined soliton 
is considered under influence of the self-consistent 
electric forces of the potential and non-potential 
origin. It was shown [2] that mentioned soliton can 
exists without a chemical bond formation. 
Introduce the coordinate system ( Ctx −=ξ ) 
moving along the positive direction of the x  axis 
with the velocity 0uC = , which is equal to the 
phase velocity of this quantum object. 

Let us find the soliton type solutions for the 
system of the generalized quantum equations for 
two species mixture. The graphene crystal lattice is 
2D flat structure which is considered in the moving 

coordinate system ( tux 0−=ξ , y ). In the 
following we intend to apply generalized non-local 
quantum hydrodynamic equations (2.1)–(2.6) to the 
investigation of the charge density waves (CDW) 
in the frame of two species model which lead to the 
following dimensional equations [9, 10]: 

Poisson equation for the self-consistent electric 
field: 
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Continuity equation for the positive particles: 
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Continuity equation for electrons: 
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Momentum equation for the х direction: 
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Energy equation for the positive particles: 
 

( ) ( )[ ]
( ) ( ) ( ) ( )(

( )
−















































+++−−





−−−

−−+−+−−−−

+

+−−+−+−

ξξξξ

ξ

ερρ
ρ

ε

ερ
∂ξ
∂

τ
∂ξ
∂

ρερ
∂ξ
∂

ppppppppp
p

p

p

p
pp

ppppp

p

ppppppp

FpFnFuuuuF
p

m
p

up

uuupuuupuunuuu

uFupupuunuuu

52252

372

2352

2
0

2
2

000
2

0
2

0
2

000
2

 

( )( ) ( ) ( )[ ]
.22

22

5252

22
0

2
2

2

ep

ep
ppypppp

pypppppp

pyppypppyp
p

p

p

p
ppp

pp
p

y
FpF

FFuuuF

FpFnuF
p

m
p

up
yy

τ∂
∂τ

∂ξ
∂τ

ρτρ
∂ξ
∂τ

ερ
ρ

ε
∂
∂τ

∂
∂

ξ

ξξ

−
−=








+








+

++−







−−

−

























−−−













++−

 

(2.29) 

 

Energy equation for electrons: 
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Let write down these equations in the 
dimensionless form (see also [2]), where di-
mensionless symbols are marked by tildes; 
introduce the scales: 
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where 0u , 0x , 0ϕ , 0ρ  – scales for velocity, 
distance, potential and density. Let us introduce 
also 
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00ρ= , where pV0  and eV0  
– the scales for thermal velocities for the electron 
and positive species;  
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where 
00uxm
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R=  is dimensionless parameter. 
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Let us introduce also the following 
dimensionless parameters: 
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and dimensionless parameters characterizing the 
internal particles energy: 

 

2
0

2
um

S
e

e
e

ε
= , 2

0

2

um
S

p

p
p

ε
= . (2.34) 

                                                              

Acting forces are the sum of three terms: the 
self-consistent potential force (scalar potential ϕ ), 
connected with the displacement of positive and 
negative charges, potential forces originated by the 
graphene crystal lattice (potential U ) and the  

external electrical field creating the intensity Е. As result the following relations are valid: 
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or in the dimensionless form: 
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Graphene is a single layer of carbon atoms densely packed in a honeycomb lattice.  
 

Taking into account the introduced values and approximations acting forces along y - direction for 
graphene (all details of the corresponding approximations are delivered in [2]) the following system of 
dimensionless non-local hydrodynamic equations for the 2D soliton description can be written in the first 
approximation: 

 

Poisson equation for the self-consistent electric field: 
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Continuity equation for the positive particles: 
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Continuity equation for electrons: 
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Momentum equation for the х direction: 
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Energy equation for the positive particles: 
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Energy equation for electrons: 
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The calculations are realized on the basement 
of equations (2.38)–(2.43) by the initial conditions 
and parameters containing in the Table 1. The vast 
results of the mathematical modeling realized with 
the help of Maple (the versions Maple 9 or more 
can be used) can be found in [2]. Here I discuss 
only the calculations of the mentioned Variant 1. 

The following Maple notations on figures are 
used: r – density pρ~ , s – density eρ

~ , u – velocity u~ , p 

– pressure pp~ , q – pressure ep~  and v – self 
consistent potential ϕ~ . Explanations placed under 
all following figures, Maple program contains 
Maple’s notations – for example, the expression 

0)0)(( =uD  means in the usual notations 

0)0(~
u~

=
ξ∂
∂ , independent variable t  responds to ξ~ . 

 

The solution exists only in the restricted domain of 
the 1D space and the obtained object in the moving 
coordinate system ( tx ~~~

−=ξ ) has the constant 
velocity 1~ =u  for all parts of the object. In this 
case the domain of the solution existence defines 
the character soliton size. The following numerical 
results (Table 2) demonstrate the realization of 
mentioned principles. Figures 1, 2 reflect the result 
of calculations for Variant 1 (Table 1) in the first 
approximation. 
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Fig. 1. s – the electron density eρ

~ , 

u – velocity u~  (solid line). 

Fig. 2. r – the positive particles density, 
(solid line); p – the positive particles pressure. 

 

Table 1. Initial conditions and parameters of calculations for Variant 1 
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Table 2. Numerical results of calculations for Variant 1( 0== pe SS ) 
 t = ξ

~
= 0.2 t = ξ~ = 0.25 

pp~p =  21731.595 22164.607 

ξ~~p ∂∂=′ pp  8660.254 8660.254 

ep~q =  0.956424 0.925592 

ξ~~q ∂∂=′ ep  -0.476250 -0.859321 

pρ
~r =  0.622976 310−⋅  0.407662 310−⋅  

ξρ ~~r ∂∂=′ p
 -0.593701 -0.308647 210−⋅  

eρ
~s =  1.866551 4.681384 

ξρ ~~s ∂∂=′ e
 18.453042 170.620851 

u u~=  1.000000 1.000000 
ϕ~v =  1.000819 1.0013853 

ξϕ ~~v ∂∂=′  0.909275 210−⋅  0.143210 110−⋅  
 

Now I can formulate some principal conclusions: 
1. All calculations realized as Variant 1 and 

containing in Table 2 correspond to spin variables 
0== pe SS . The domain of the soliton existence is 

equal to ξ~  varying in interval (-0.305, 0.274).  
2. All calculations realized as Variant 1 

corresponding to constant spin variables pe SS ,  
varying from 0== pe SS  to 910== pe SS  lead to the 
absolutely the same results shown in Table 2. The 
domain of the soliton existence is also equal to (-
0.305, 0.274).  

3. This fact confirms the previous theoretical 
result - in the case when the change of the species 
internal energies is absent as result of interaction 
with external media, the solution of the full system 
of equations (2.1)–(2.6) can be reduced to the 
system (2.1)–(2.5), (2.23). 

4. These calculations realized by several 
numerical methods are the direct evidence in favor 
of high accuracy of numerical methods in the 

interactive Maple system for solution of the 
ordinary differential equations.  

 

3. The charge internal structure of electron 
Let us consider a negative charged physical 

system placed in a bounded region of a space. 
Internal energy αε  of this one species object and a 
possible influence of the magnetic field are taken 
into account. The character linear scale of this 
region will be defined as result of the self-
сonsistent solution of the generalized non-local 
quantum hydrodynamic equations (2.1)–(2.6). In 
the following I intend to suppose also that the 
mentioned physical object for simplicity has the 
spherical form and the system (2.1)–(2.6) is 
reasonable to write in the spherical coordinate 
system [20, 21]. Remark also that the terms rgρ , 

θρg , ϕρg  correspond to the components of the 
mass forces acting on the unit of volume. For 
example, for the potential forces of the electrical 
origin 

r
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m
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e
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=−=−==

ψρ . 

It means also that in the following q  is the absolute value of the negative charge per the unit of volume. 
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We have:  
non-local continuity equation: 
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Non-local momentum equation ( re  projection): 
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Non-local momentum equation ( ϕe  projection): 
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Non-local momentum equation ( θe  projection): 
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Energy equation: 
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Let us point out the important particular non-stationary one dimensional case corresponding to the negative 
charged system evolution in the potential electric field: 

 

(continuity equation) 
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(momentum equation) 
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(energy equation) 
 















 +

∂
∂

+














 +−+ pvvr

rr
pv

t
pv

t rrrr 2
5

2
11

2
3

2
1

2
3

2
1 2

00
2

2
2
0

2
0 ρρ

∂
∂τρ

∂
∂

+












∂
∂

− rv
r

q 0
ψ  

rr vpvr
rr

0
2
0

2
2 2

5
2
11















 +

∂
∂

+ ρ 







+






 +− rr vpv

t 0
2
0 2

5
2
1 ρ

∂
∂τ −














 + 2

0
2
0

2
2 2

7
2
11

rr vpvr
rr

ρ
∂
∂  

– −



















 +

∂
∂

−
∂
∂ pv

r
qv

r
q rr 2

3
2
1 2

0
2
0 ρψ

ρ
ψ

rv
r

q 0∂
∂ψ + 

+ ( ) ( )



















∂
∂

−
∂
∂

+
∂
∂

+
∂
∂

∂
∂

r
q

r
pvr

rr
v

tr
q

rr
ψρρψ

ρ
τ 2

0
2

20
1 – 

+
























+

∂
∂

∂
∂

−
ρ

τ
2

2
0

2
2 2

5
2
11 ppv

r
r

rr
r 01 2

2 =







∂
∂

∂
∂

r
qpr

rr
ψ

ρ
τ . 

(3.8) 

 

Assume that non-stationary physical system is 
at the rest, namely 00 =rv . Taking into account 
also the forces of the magnetic origin one obtains 
from the system of equations (3.1) – (3.5) for the 
non-stationary one-dimensional (along r ) case:  
(continuity equation) 
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(momentum equation, re  projection) 
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(momentum equation, ϕe  projection) 
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(momentum equation, θe  projection): 
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(energy equation) 
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(3.13) 

 

where ε  is the internal particle energy. To the 
system of equations (3.9), (3.10), (3.13) the Poisson 
equation should be added: 
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where ψ  – scalar electric potential and q  is the 
absolute value of the negative charge (per the unit 
of volume) of the one species quantum object. 
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4. The derivation of the angle relaxation 
equation 

 

Let us consider an electron which is at rest at 
the time moment 0=t . This electron has the 
internal energy ε  (see also (2.20), (2.21)) 
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containing the spin and magnetic parts, namely  
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where the angle ϑ  reflects the possible deviation 
between a separated direction of the spin at the 
initial time moment and the direction of magnetic 
momentum after an external perturbation. For 
example this perturbation can be considered as 
result of the approach of the second electron to the 
previous one at the distance inr  with appearance of 
the virtual photon with the wavelength: 
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Taking into account the previous remarks let us 
consider the charge time evolution inside of the 
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general complicated system (3.1)–(3.5). It is 
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unknown functions can be expanded in a Taylor 
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In particular we need to find the time derivation 
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As it was supposed the deviation of the 
magnetic moment from the spin orientation is result 
of the approach of the second electron with impulse 
p  to the first electron at the distance inr . In this case: 
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Let us introduce now the fine-structure constant α   
                                                                    

.
ph

c
E
E

=α  (4.11) 
                                                                

and transform (4.10) 
                                                           

ph
in

Es
prt

απϑ 2
=

∂
∂ , (4.12) 

 

in
ph r

Es
ht

λαπϑ 2
=

∂
∂ . (4.13) 

 

and using srin λ=  one obtains 
 

.sinsin2sin ϑαωϑαπϑϑ inphE
ht

±=±=
∂
∂

±  (4.14) 
 

or 
 

int
αωϑ

=
∂
∂ , (4.15) 

 

where inω  is the photon frequency which the wave 
length is inrπ2 . But  
 

c
e


2
=α . (4.16) 

                                                                                                                                   

It means, that equation (4.15) takes the 
transparent physical form 

 

inr
e

t 

2
=

∂
∂ϑ . (4.17) 

                         
5. The mathematical modeling of the 

charge distribution in electron 
 

Let us deliver the derivation of the non-local 
equations in the first approximation. From (3.9)–
(3.12) follows 

 

0=
∂
∂

−
r

q
r
p ψ
∂
∂ . (5.1) 

                                                                                                                          



  Вестник МИТХТ, 2014, т. 9, №2 

70 
 

Transform the energy equation (3.13) using 
(4.14), (5.1), (see also (2.22)) 
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2
51

2
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2
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


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∂
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∂
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r
qpnr
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r

r
rr

B
cm

en in
e

ψ
ρ

ετ

ε
ρ

τ

ϑαω

 (5.2) 

 

or 
 

.
2
5

sin
2

2

22














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
∂
∂

∂
∂
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+


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∂
∂

∂
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=±

ρ
τ

ετϑαω

p
r
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r
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r
rB
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en in
e



 (5.3) 

 

Naturally to suppose that 
r∂
∂ε =0 and non-local 

parameter τ  does not depend on r , then: 
 



















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∂

∂
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=±
q
p

r
pr

r
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с in
22

2
5sin

2
τϑαω . (5.4) 

 

Using the relation 
e
qm=ρ , scales 000 ,, qpr  

for the values qpr ,,  and denoting by tilde the 
dimensionless values one obtains 

 



















∂
∂

∂
∂

=±
q
p

r
pr

r
qr

p
qr

B
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~

~
~~

~
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5
22

2
0

2
0

2
0 ϑα

τ
ω . (5.5) 

                                                              

Introduce the notation B~  for the dimensionless 
coefficient 

 

ϑα
τ
ω

sin1
5

~
2
0

2
0

2
0

p
qr

B
eс

B in
= , (5.6) 

                                            

we have 
 

qrB
q
p

r
pr

r
~~~

~
~

~
~~

~
22 ±=


















∂
∂

∂
∂ . (5.7) 

                                            

The Poisson equation (3.14) takes the 
dimensionless form 

 

qr
r

r
r

A ~~
~
~~

~
22 =








∂
∂

/∂
∂ ψ , (5.8) 

                                                                                

where the dimensionless coefficient A  is introduced 
 

0
2
0

0

4 qr
A

π

ψ
= , (5.9) 

                                                                                                                

0ψ  is the scale for the potential ψ .  
In the absence of perturbations 0~

=B  and from 
(5.7) one obtains  
 

Cqp = . (5.10) 
 

From (5.7), (5.8) follow also 
 

.
r~
~

r~
r~

AB~
q~
p~

r~
p~r~

r~
22 







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



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
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∂
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∂
∂  (5.11) 

Write down the equation (5.1) in the 
dimensionless form  

 

0~
~~

~
~

00

0 =
∂
∂

−
∂
∂

r
q

r
p

q
p ψ
ψ

. (5.12) 
 

and introduce the obvious relation between scales 
for the simplification  

 

1
00

0 =
ψq
p , (5.13) 

                                                                       

then 
 

0~
~~

~
~

=
∂
∂

−
∂
∂

r
q

r
p ψ . (5.14) 

                                                                       

and 
 

ϑα
ψτ

ω sin
5

~
2
0

2
0

e
r

с
BB in

= . (5.15) 
 

Using equations (5.11), (5.14) it turns out that 
 

r
q

q
p

r
pAB

r
p

~
~

~
~

~
~ln~

~
~

∂
∂

=
∂

∂
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∂ , (5.16) 

 

0~
~ln1~
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∂
±








∂
∂

r
p

p
AB

q
p

r
, (5.17) 

 

then the second term on the left hand side of Eq. 
(5.16) reflects the influence of perturbation. 
Omitting this term we return to the relation (5.10).  

Before going further some points need to be 
made about so called the “classical electron 
radius”. This is a calculated radius based on an 
assumption that the electron is the empty charged 
sphere a certain radius. It has a value of 0r  = 

151082.2 −⋅ m obtained as result of calculation by 
equating the potential electrostatic energy 0

2 / re  to 

the energy of rest 2cme . Now compare this radius 
with the measured radius of a proton, which is 

151011.1 −⋅ m. There are several sources with 
different values, but they appear to be around 

1510− m. According to this an electron has a radius 
2.5 times larger than a proton. Given that a proton 
is 1836 heavier however, it’s difficult to know if 
we should take this “classical radius” seriously. 

Write down once more the system of equation 
which was used in the mathematical modeling 
(SYSTEM I) 
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where 
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Some significant remarks: 
 

1. Solutions of SYSTEM I belongs to the 
class of Cauchy problems and need not in 
introduction the strictly defined the electron radius 
beforehand. 

2. From here on for convenience the different 
signs were included in B~ . 

3. The mentioned classical radius 0r  is only 
one from possible scales. 

Really, from (5.8) follows that the absolute 
electron charge elq  is equal to 
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or  
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

∂
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= elrrr
ψ . (5.19) 

                                                          

for the scales choosed as  
 

00 / re=ψ , elrr =0 , 3
0 / elreq = , 

4

2

000
elr
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(5.20) 

 

In this case 
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or 
 

[ ] 2

2
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r
eF
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But in the definition of the fine-structure 
constant α  the energy cE  was introduced as the 
energy needed to overcome the electrostatic 
repulsion between two electrons a distance of inr  
apart (see also (4.11)). It means that for this 
problem naturally to put the scale inrr =0 . In this 
case (system of conditions SYSTEM II): 

 

00 / re=ψ , inrr =0 , 3
0 / inreq = ,  
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Parameter (5.15) can be rewritten as 
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Let us introduce the character magnetic force 
 

.
5

B
r

c
e

F in
mag τ

=  (5.24) 
 

and the character electrostatic force 
 

2

2

in
elect

r
eF = . (5.25) 

 

It means that parameter B~  can be written in the 
transparent physical form 

 

ϑsin~

elect

mag

F
F

B = . (5.26) 
 

Is it possible to obtain the soliton type solution 
for this object under these conditions? Let us show 
that the System I admits such kind of solutions.  

All following calculations are realized under 

conditions SYSTEM II (in particular by 
π4
1

=A , 

different B~  and initial conditions). The influence 
B~  is investigated from zero up to value B~ =10. 

Maple notations are used ( ,~v ψ=  
r~
~

v)(t)(D
∂
∂

=
ψ , 

q~q = , r~t = , B~B = ). Cauchy conditions for the 
calculations reflected on figures 3–20:  

 

( ) ( ) 1,0~0v ==ψ  ( ) 00~
~

v)(0)(D =
∂
∂

=
r
ψ ; 

( ) 10~q(0) == q , ( ) 00~
~

q)(0)(D =
∂
∂

=
r
q ; 

( ) 10~)0(p == p , ( ) 00~
~

p)(0)(D =
∂
∂

=
r
p . 

 

Figures 3–5 correspond to the case when the 
angle ϑ  is nil and then 0~

=B . Solutions in all 
calculations exist only in a bounded region of the 
1D space. The size of this region limr  defines the 
electron radius. For the case 0~

=B  one obtains 
9235.0r~lim = . 



  Вестник МИТХТ, 2014, т. 9, №2 

72 
 

 

  
Fig. 3. )~(~p rp= , 0~

=B . Fig. 4. ,)~(~v rψ=  )~(~
~

v)(t)(D r
r∂

∂
=

ψ , 

solid line )~(~v rψ= , 0~
=B . 

  
Fig. 5. )~(~q rq= , 0~

=B .                               Fig. 6. )~(~p rp= , 001.0~
=B . 

  
Fig. 7. ,)~(~v rψ=  )~(~

~
v)(t)(D r

r∂
∂

=
ψ , 

solid line )~(~v rψ= , 001.0~
=B . 

Fig. 8. )~(~q rq= , 001.0~
=B . 

For the case 001.0~B == B  one obtains also 9235.0~
lim =r . 

  
Fig. 9. )~(~p rp= , 01.0~

=B .                 Fig. 10. ,)~(~v rψ=  )~(~
~

v)(t)(D r
r∂

∂
=

ψ ,  

solid line )~(~v rψ= , 01.0~
=B . 
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Fig. 11. )~(~q rq= , 01.0~

=B . Fig. 12. )~(~p rp= , 1.0~
=B . 

For the case 01.0~B == B  one obtains 9239.0~
lim =r . 

  
Fig. 13. ,)~(~v rψ=  )~(~

~
v)(t)(D r

r∂
∂

=
ψ ,  

solid line )~(~v rψ= , 1.0~
=B . 

Fig. 14. )~(~q rq= , 1.0~
=B . 

For the case 1.0~B == B  one obtains 9272.0~
lim =r . 

  
Fig. 15. )~(~p rp= , 1~

=B . Fig. 16. ,)~(~v rψ=  )~(~
~

v)(t)(D r
r∂

∂
=

ψ , 

solid line )~(~v rψ= , 1~
=B . 

 
 

Fig. 17. )~(~q rq= , 1~
=B . Fig. 18. )~(~p rp= , 10~

=B . 

For the case 1~B == B  one obtains 9614.0~
lim =r . 
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Fig. 19. ,)~(~v rψ=  )~(~
~

v)(t)(D r
r∂

∂
=

ψ ,  

solid line )~(~v rψ= , 10~
=B . 

Fig. 20. )~(~q rq= , 10~
=B . 

For the case 10~B == B  one obtains 4397.1~
lim =r . Calculations reflected on figures 21 – 23 are realized by 

conditions SYSTEM III: 1.0~B == B , ( ) ( ) 1,0~0v ==ψ  ( ) 00~
~

v)(0)(D =
∂
∂

=
r
ψ ; ( ) 1.00~q(0) == q , ( ) 00~

~
q)(0)(D =

∂
∂

=
r
q , 

( ) 01.00~)0( == pp , ( ) 00~
~

p)(0)(D =
∂
∂

=
r
p . 

  
Fig. 21. )~(~p rp= , 1.0~

=B .                    Fig. 22. ,)~(~v rψ=  )~(~
~

v)(t)(D r
r∂

∂
=

ψ , 

solid line )~(~v rψ= , 1.0~
=B . 

  
Fig. 23. )~(~q rq= , 1.0~

=B . Fig. 24. )~(~p rp= , 01.0~
−=B . 

 

For the case SYSTEM III one obtains 44.1r~lim = .  
Figures 24 – 38 demonstrate the results of calculations for the negative values B~=B  but for the 

Cauchy conditions: 
 

( ) ( ) 1,0~0v ==ψ  ( ) 00~
~

v)(0)(D =
∂
∂

=
r
ψ ; ( ) 10~q(0) == q , ( ) 00~

~
q)(0)(D =

∂
∂

=
r
q , ( ) 10~)0( == pp , 

( ) 00~
~

p)(0)(D =
∂
∂

=
r
p . 
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Fig. 25. )~(~v rψ= , 01.0~B −== B . Fig. 26. )~(~
~

v)(t)(D r
r∂

∂
=

ψ , 01.0~B −== B . 

For the case 01.0~B −== B  one obtains 92312.0r~lim = . 

 
 

Fig. 27. )~(~q rq= , 01.0~B −== B . Fig. 28. )~(~p rp= , 1.0~
−=B . 

  
Fig. 29. )~(~v rψ= , 1.0~B −== B . Fig. 30. )~(~

~
v)(t)(D r

r∂
∂

=
ψ , 1.0~B −== B . 

  
Fig. 31. )~(~q rq= , 1.0~B −== B . Fig. 32. )~(~p rp= , 1~

−=B . 

For the case 1.0~B −== B  one obtains 9198.0~
lim =r .  
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Fig. 33. )~(~v rψ= , 1~B −== B . Fig. 34. )~(~

~
v)(t)(D r

r∂
∂

=
ψ , 1~B −== B . 

  
Fig. 35. )~(~q rq= , 1~B −== B . Fig. 36. )~(~p rp= , 10~

−=B . 

For the case 1~B −== B  one obtains 8979.0~
lim =r . 

  

Fig. 37. )~(~v rψ= , )~(~
~

v)(t)(D r
r∂

∂
=

ψ ,                                 

solid line )~(~v rψ= , 10~B −== B . 

Fig. 38. )~(~q rq= , 10~B −== B . 
 

For the case 10~B −== B  one obtains 6487.0~
lim =r . Finally I show some results obtained for the case 

( ) ( ) 1,0~0v ==ψ  ( ) 00~
~

v)(0)(D =
∂
∂

=
r
ψ ; ( ) 1.00~q(0) == q , ( ) 00~

~
q)(0)(D =

∂
∂

=
r
q , ( ) 01.00~)0( == pp , ( ) 00~

~
p)(0)(D =

∂
∂

=
r
p  

but for the negative value 1.0B~ −==B ; compare fig. 39–41 with fig. 21–23. 



Вестник МИТХТ, 2014, т. 9, № 2 

77 
 

  
Fig. 39. )~(~p rp= , 1.0~B −== B . Fig. 40. ,)~(~v rψ=  1.0~B −== B . 

  
Fig. 41. )~(~

~
v)(t)(D r

r∂
∂

=
ψ , 1.0~B −== B . Fig. 42. )~(~q rq= , 1.0~B −== B . 

For the last case 1.0~B −== B  one obtains 6487.0~
lim =r .  

 

Some conclusions from delivered 
calculations: 

 

1. From calculations follow that electrons can 
be considered like charged balls (shortly CB 
model) which charges are concentrated mainly in 
the shell of these balls. In the first approximation 
(when 0=ϑ ) this result does not depend on the 
choice of the non-locality parameter.  

2. Electron radius can not be indicated 
exactly in principle; its radius depends on physical 
system where an electron is placed. It is possible to 
speak about the different electron shells connected 
with evolution of the charge density, quantum 
pressure, electric potential and forces near the 
boundary.  

3. From the theoretical point of view the 
electron size is the size of domain of the existence 
of the corresponding solution. The mentioned sizes 

lim
~r  are indicated for all considered cases; the 
values lim

~r  practically do not depend on the chosen 
numerical method. 

4. The value of lim
~r  depends significantly on 

choosing of the Cauchy conditions. By the same 
Cauchy conditions the weak dependence on 
parameter B~  exists only for the moderate value of 
this parameter. If B~  is of the unit order or more 

the value lim
~r  may vary very significantly especi-

ally with changing of sign in front of B~ . 
5. The proton-electron collision in the frame 

of CB-model should be considered as collision of 
two resonators. Curves of the equal amplitudes of 
the intensity of electric field create domains in 
proton in the form of many “islands” – caustic 
surfaces of electromagnetic field which can serve 
as additional scattering centers. It can open new 
way for explanation a number of character 
collisional features depending on the initial and 
final electron energies without consideration 
partons or quarks as scattering centers, [11]. 

6. This results should be taken into account in 
the theory of the single floating electron been 
isolated in a Penning trap (see for example [22, 
23]). 

In this connection another interesting problem 
is arising. Can be experimentally confirmed the 
resonator model for the electron? In this case it is 
reasonable to remind one old Blokhintsev paper 
published in Physics-Uspekhi as the letter to Editor 
[24]. He considered the process of the interaction 
neutrino υ  and electron e with transformation of 
electron in µ  – meson υµυ ′+→+ e . In this case 
the energy density W  can be estimated as 

υυµ ψψψψ ′
∗= egW , (5.27) 
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where ∗g  is Fermi constant, υµ ψψψ ,,e  are 
wave functions for electron, µ  – meson and 
neutrino correspondingly. Following I.S. Shapiro, 
Blokhintsev estimated ∗g  as  

 

( ) 2
0Λ=∗ cg  , (5.28) 

 

with cm16
0 10~ −Λ . His conclusion consists in 

affirmation that the strong interaction of electron 
and neutrino takes place when the wave length   
of the neutrino wave packet less than 0Λ . 

 

0Λ< . (5.29) 
 

The inequality (5.29) can be considered as 
estimation for revealing of the resonance electron 
properties. Blohintzev supposes that fulfilling of 
(5.29) leads to the significant changes in the 
Compton effect and to other changes in electro-
magnetic interaction of electrons. It is possible also 
to wait for the influence of the resonance electron 
effects on investigation of hypothetical neutrino 
oscillations. 

 

6. Conclusion 
 

The origin of the charge density and spin waves 
is a long-standing problem relevant to a number of 
important issues in condensed matter physics. The 
collective excitations are discussed here in view of 
quantum non-local hydrodynamics. Whereas the 
latter remains valid in graphene and yields insight 
into the understanding of spin – charge dependent 
modes, the generalized system of equations is 

derived including possible particular cases. It is 
known that the Schrödinger – Madelung quantum 
physics leads to the destruction of the wave packets 
and can not be used for the solution of this kind of 
problems. The appearance of the soliton solutions 
in mathematics is the rare and remarkable effect. 
As we see the soliton’s appearance in the 
generalized hydrodynamics created by Alexeev is 
an “ordinary” oft-recurring fact. Investigation of 
the inner charge distribution of electron in the 
frame of the non-local quantum hydrodynamics 
leads to following main results: 

1. From calculations follow that electron can 
be considered like charged ball (shortly CB model) 
which charge is concentrated mainly in the shell of 
this ball. In the first approximation this result does 
not depend on the choice of the non-locality 
parameter.  

2. Electron radius can not be indicated 
exactly in principle; its radius depends on physical 
system where an electron is placed. It is possible to 
speak about the different electron shells connected 
with evolution of the charge density, quantum 
pressure, electric potential and forces near the 
boundary.  

3. These results should be taken into account 
in the theory of the single floating electron been 
isolated in a Penning trap. 

Important to underline that the problem of 
existing and propagation of solitons belongs to the 
class of significantly non-local non-linear problems 
which can be solved only in the frame of vast 
numerical modeling. 
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К НЕЛОКАЛЬНОЙ ТЕОРИИ ЗАРЯДОВЫХ И СПИНОВЫХ 
ВЗАИМОДЕЙСТВИЙ В ВОЛНАХ И ЧАСТИЦАХ 
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В рамках нелокальной квантовой гидродинамики построена теория взаимодействия в волнах 
зарядовых и спиновых возбуждений. Исследована внутренняя зарядовая структура электрона на 
основе нелокального описания. Из расчетов следует, что внутреннее распределение заряда 
электрона отвечает модели шара, заряд которого сосредоточен в основном в окрестности оболочки 
шара. В расчетах учитывается возможное отклонение спина от направления магнитного момента. 

Ключевые слова: основы теории процессов переноса, теория солитонов, обобщенные гидродинамические 
уравнения, основания квантовой механики. 
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