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he theory of the charge — spin interaction in waves in the frame of non-local quantum hydrodynamics is

T

considered. The electron charge inner structure is investigated using the non-local physical description.
From calculations follow that electrons can be considered like charged balls (shortly CB model) which

charges are concentrated mainly in the shell of these balls. The possible direction deviation of the spin
momentum and the magnetic momentum is taken into account.
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In  Schrodinger—Pauli quantum theory the
electron can be theoretically considered as a bound
state of chargon, spinon and orbiton. In particle
physics, spin is an intrinsic form of angular
momentum carried by elementary particles
including electron. The orbiton is carrying the
orbital degree of freedom and the chargon is
carrying the charge. One of the often used models
in condensed matter physics is the spin—charge
separation in electrons in some materials in which
they “split” into three independent particles, the
spinon, orbiton and the chargon (or its antiparticle,
the holon).

Usually the theory of spin—charge separation
originates with the work of Sin-Itiro Tomonaga
who developed an approximate method for treating
one-dimensional interacting quantum systems [1].
The aim of the article consists in consideration of
the spin — charge separation and interaction from
position of the non-local quantum hydrodynamics.
The article is organized as follows. In the definite
sense this paper can be considered as the
prolongation of the article [2]. As result in
Introduction (Section 1) the basic principles of
generalized quantum hydrodynamics (GQH)
created by me and expounded in particular in [3-8]
are delivered in a brief form. As it was shown
earlier the theory of transport processes (including
guantum mechanics) can be applied in the frame of
the unified theory based on the non-local physical
description. In particular the generalized hydro-
dynamic equations represent an effective tool for
solving problems in the very vast area of physical
problems [9-12]. In Section 2 the system of non-
local quantum hydrodynamic equations is applied
for investigation of the charge — spin waves
investigations, taking as a case in point the waves
in graphene. Section 3 contains the basic non-local
equations in spherical coordinate system for
description of a negative charged physical system
placed in a bounded region of a space. Internal
energy ¢, of this one species object and a possible

influence of the magnetic field are taken into
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account. In Section 4 is pointed out the important
particular non-stationary one dimensional case
corresponding to the negative charged system
evolution in the potential electric field. The
derivation of the angle relaxation equation is
realized for the angle reflecting the possible
deviation between a separated direction of the spin
at the initial time moment and the direction of
magnetic momentum after an external perturbation.
Section 5 involves the mathematical modeling of
the charge distribution in electron.

1. Introduction. About the basic principles
of the generalized quantum hydrodynamics

Let us consider the transport processes in open
dissipative systems and ideas of following
transformation of generalized hydrodynamic
description in quantum hydrodynamics which can
be applied to the individual particle.

The kinetic description is inevitably related to
the system diagnostics. Such an element of
diagnostics in the case of theoretical description in
physical kinetics is the concept of the physically
infinitely small volume (PhSV). The correlation

between theoretical description and system
diagnostics is well-known in physics. Suffice it to
recall the part played by test charge in electrostatics
or by test circuit in the physics of magnetic
phenomena. The traditional definition of PhSV
contains the statement to the effect that the PhSV
contains a sufficient number of particles for
introducing a statistical description; however, at the
same time, the PhSV is much smaller than the
volume V of the physical system under
consideration; in a first approximation, this leads to
the local approach in investigating of the transport
processes. It is assumed in classical hydrodynamics
that local thermodynamic equilibrium is first
established within the PhSV, and only after that the
transition occurs to global thermodynamic
equilibrium if it is at all possible for the system
under study.

Let us consider the hydrodynamic description
in more detail from this point of view. Assume that
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we have two neighboring physically infinitely
small volumes PhSV; and PhSV, in a non-

equilibrium system. Even the point-like particles
(starting after the last collision near the boundary
between two mentioned volumes) can change the
distribution functions in the neighboring volume.
The adjusting of the particles dynamic charac-
teristics for translational degrees of freedom takes
several collisions in the simplest case. As result, we
have in the definite sense “the Knudsen layer”
between these volumes. This fact unavoidably
leads to fluctuations in mass and hence in other
hydrodynamic quantities. Existence of such
“Knudsen layers” is not connected with the choice
of space nets and fully defined by the reduced
description for ensemble of particles of finite
diameters in the conceptual frame of open
physically small volumes, therefore — with the
chosen method of measurement. This entire
complex of effects defines non-local effects in
space and time.

The physically infinitely small volume (PhSV)
is an open thermodynamic system for any division
of macroscopic system by a set of PhSVs. But the
Boltzmann equation (BE) [3, 13, 14]

Df /Dt=J8, (1.1)

where JB is the Boltzmann collision integral and
D/Dt is a substantive derivative, fully ignores non-

local effects and contains only the local collision

integral JB. The foregoing nonlocal effects are
insignificant only in equilibrium systems, where
the kinetic approach changes to methods of
statistical mechanics.

This is what the difficulties of classical
Boltzmann physical kinetics arise from. Also a
weak point of the classical Boltzmann Kkinetic
theory is the treatment of the dynamic properties of
interacting particles. On the one hand, as follows
from the so-called “physical” derivation of BE,
Boltzmann particles are regarded as material
points; on the other hand, the collision integral in
the BE leads to the emergence of collision cross
sections.

Notice that the application of the above
principles also leads to the modification of the
system of Maxwell equations. While the traditional
formulation of this system does not involve the

continuity equation, its derivation explicitly
employs the equation

op* 0 .

Z o+ =0, (12)
ot arJ

where p? is the charge per unit volume, and j* is

the current density, both calculated without
accounting for the fluctuations. As a result, the
system of Maxwell equations written in the
standard notation, namely:
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EBZO, Q.D:pa,

or or (13)
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9= T -+ 2

or ot or ot

contains

pP=p-p" i =j-j". (1.4)
The p™, j” fluctuations calculated using the

generalized Boltzmann equation are given, for
example, in Ref. [4, 6, 8]. The violation of Bell’s
inequalities [15] is found for local statistical
theories, and the transition to non-local description
is inevitable.

The rigorous approach to derivation of Kinetic

equation relative to one-particle DF f (KE;) is

based on employing the hierarchy of Bogoliubov
equations. Generally speaking, the structure of

KE; is as follows:

_:JB+JnI

(1.5)

where 3™ is the non-local integral term. An
approximation for the second collision integral is
suggested by me in generalized Boltzmann physical
kinetics,

D( Df
=—|7—|
Dt\ Dt

Here, 7 is non-local relaxation parameter, in
the simplest case — the mean time between
collisions of particles, which is related in a
hydrodynamic approximation with dynamical
viscosity z and pressure p,

an (1.6)

r p=Igk, (.7)

where the factor IT is defined by the model of
collision of particles: for neutral hard-sphere gas,
I1=0.8 [16, 17]. All of the known methods of the
kinetic equation derivation relative to one-particle
DF lead to approximation (1.6), including the
method of many scales, the method of correlation
functions, and the iteration method.

In the general case, the parameter ¢ is the non-
locality parameter; in quantum hydrodynamics, its
magnitude is correlated with the “time-energy”
uncertainty relation [9, 10].

Now we can turn our attention to the quantum
hydrodynamic description of individual particles.
The abstract of the classical Madelung’s paper [18]
contains only one phrase: “It is shown that the
Schrodinger equation for one-electron problems
can be transformed into the form of hydrodynamic
equations”. The following conclusion of principal
significance can be done from the previous
consideration [9, 10]:
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1. Madelung’s quantum hydrodynamics is
equivalent to the Schrédinger equation (SE) and
leads to the description of the quantum particle
evolution in the form of Euler equation and
continuity equation. Quantum Euler equation
contains additional potential of non-local origin
which can be written for example in the Bohm
form.

2. SE is consequence of the Liouville
equation as result of the local approximation of
non-local equations.

3. Generalized Boltzmann physical kinetics
leads to the strict approximation of non-local
effects in space and time and after going to the
local approximation leads to parameter z, which
on the quantum level corresponds to the uncertainty
principle “time-energy”.

4. Generalized hydrodynamic  equations
(GHE) lead to SE as a deep particular case of the
generalized Boltzmann physical Kkinetics and
therefore of non-local hydrodynamics.

In principle GHE needn’t in using of the “time-
energy” uncertainty relation for estimation of the
value of the non-locality parameter t. Moreover the
“time-energy” uncertainty relation does not lead to
the exact relations and from position of non-local
physics is only the simplest estimation of the non-
local effects. Really, let us consider two
neighboring physically infinitely small volumes
PhSV, and PhSV, in a non-equilibrium system.

Obviously the time 7 should tends to diminishing
with increasing of the velocities U of particles
invading in the nearest neighboring physically
infinitely small volume (PhSV; or PhSV,):

r=H/u", (1.8)

But the value 7 cannot depend on the velocity
direction and naturally to tie 7 with the particle
Kinetic energy, then

T= H/(muz),

(1.9)

where H is a coefficient of proportionality, which
reflects the state of physical system. In the simplest
case H is equal to Plank constant # and relation
(1.8) becomes compatible with the Heisenberg
relation. Possible approximations of 7 — parameter
in details in the monographs [8, 20, 21] are
considered. But some remarks of the principal
significance should be done.

It is known that Ehrenfest adiabatic theorem is
one of the most important and widely studied
theorems in Schrodinger quantum mechanics. It
states that if we have a slowly changing
Hamiltonian that depends on time, and the system
is prepared in one of the instantaneous eigenstates
of the Hamiltonian then the state of the system at
any time is given by an the instantaneous
eigenfunction of the Hamiltonian up to
multiplicative phase factors.

The adiabatic theory can be naturally
incorporated in generalized quantum hydro-
dynamics based on local approximations of non-
local terms. In the simplest case if AQ is the

elementary heat quantity delivered for a system
executing the transfer from one state (the
corresponding time moment is t;,) to the next one

(the time moment t,) then
-t
T
where r=t,—t;; and T is the average Kinetic
energy. For adiabatic case Ehrenfest supposes that
2Tt =01,Q9,... (1.11)

where  Q;,Q,,.. are adiabatic invariants.
Obviously for Plank’s oscillator (compare with

(1.9)):
2Tz = nh.

25(Tz) (1.10)

(1.12)

Then the adiabatic theorem and consequences
of this theory deliver the general quantization
conditions for non-local quantum hydrodynamics.

2. Generalized quantum hydrodynamic equations
Strict consideration leads to the following system of the generalized hydrodynamic equations (GHE)

[4, 8] written in the generalized Euler form:
continuity equation for species« :

a a o

_paFo(zl) _q_apaVO % B:|} =Ry,
ma
and continuity equation for mixture:

e

T P q
+1 -7a—paF0(ll) —m—apavoxB:|}=0.

o

P
a

Vs -
E(paVO)"'_'(paVOVO)_"

o 1) 2z o o
_{pa _Ta|:&+_’(pa\/0)}}+§'{pav0 _Ta|:

[24

a
(2.1)

+%'(PaVo)}}+§'{ﬂVo —gfa[g(PaVo)Jr%'(PaVoVo)ﬂL

(2.2)



Momentum equation for species:
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Generalized moment equation for mixture:
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Energy equation for component:
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(2.3)

(2.4)

(2.5)
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and after summation the generalized energy equation for mixture:

l
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Here Fo(,l) are the forces of the non-magnetic

origin, B — magnetic induction, T — unit tensor,
q, — charge of the « -component particle, p, -

static pressure for o -component, ¢, — internal
energy for the particles of « - component, v, —

hydrodynamic velocity for mixture. For calcu-
lations in the self-consistent electro-magnetic field
the system of non-local Maxwell equations should
be added (see (1.3)).

It is well known that basic Schrodinger
equation (SE) of quantum mechanics firstly was
introduced as a quantum mechanical postulate. The
obvious next step should be done and was realized
by E. Madelung in 1927 — the derivation of special
hydrodynamic form of SE after introduction wave
function ¥ as:

W(x,y,2,t)= alx, y, z,t) eBtyat), (2.7)

Using (2.7) and separating the real and imagine
parts of SE one obtains:

[azhaﬂJ o
m or

and Eq. (2.8) immediately transforms in continuity
equation if the identifications in the Madelung’s
notations for density p and velocity v

da? o

a  or (2.8)

p=a’=V¥x (2.9)
0
v:g(ﬁh/m). (2.10)

introduce in Eq. (2.8). Identification for velocity
(2.10) is obvious because for 1D flow with const
values p, E

0 h O 1
V:—(ﬁh/m)z_—[__(Ekt_ px)}:
oX m ox h (2.11)
S22 )y
m &x ¢
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where Vg is phase velocity. The existence of the

condition (2.10) means that the corresponding flow
has potential:

D = ph/m. (2.12)
As result two effective hydrodynamic

equations take place:

op O

= . =0, 2.13

et () (2.13)

v, 10,2 L10f, 7’ Aa

a zer mar[u 2m a} (2.14)

But:

Ao _Ad? _i(a_ajz (2.15)
(04 20(2 az or ' l
and the relation (2.15) transforms (2.14) in

particular case of the Euler motion equation:
Nyt y, (2.16)
ot or m or
where introduced the efficient potential:
. n? 1 (op)?
U*=U-———[ap——|L]| |
4mp{ r Zp(ﬁrj } (2.17)

Additive quantum part of potential can be
written in the so called Bohm form:

A2 2 1 (6pj2
Ap = Ap——| =1 | 2.18
2m\/; \/; 4mp{ r 2p\or (2.18)
Then
n? \/‘
U*=U+Ugy =U - Ap =
+Yqu 2m\/; Y
n2 1 (p)? (2.19)
:U[Ap(pj ]
4mp 2p\ or
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Some remarks: e) In chemically reaction systems the internal
a) SE transforms in hydrodynamic form  energies &, define the reactions heat Q. For

without additional assumptions. But numerical ; ;
4 example for bimolecular reaction A, + A, > A, +
methods of hydrodynamics are very good P ath > At A

developed. As result at the end of seventieth of the  the reaction heat Q = &¢ + &g — &3 —&p.

last century we realized the systematic calculations f) For so called “elementary particles” the

of quantum problems using quantum hydro- internal energy can contain the spin and magnetic

dynamics (see for example [3, 19]. parts. For example, electron has the internal energy & :
b) SE reduces to the system of continuity

equation and the particular case of the Euler e =felsp +Eelm: (2.20)

equation with the additional potential proportional

to #%. The physical sense and the origin of the

Bohm potential are established later in [9, 10]. Eel,sp = hl2, ¢ =—Pm -B. (2.21)
c) SE (obtained in the frame of the theory of ) )

classical complex variables) cannot contain the  Pm — €lectron magnetic moment, B — magnetic

with the spin and magnetic parts, namely:

energy equation in principle. As result in many e # 5

cases the palliative approach is used when for  induction. But Pm =——2—,then Eo = — Weff -
solution of dissipative quantum problems the Me C 2
classical hydrodynamics is used with the insertion The effective frequencies wgs; can be altered in

of the additional Bohm potential in the system of

. . the process of the interaction with the surrounding
hydrodynamic equations.

d) The system of the generalized quantum environment. In this case the additional equations

hydrodynamic equations contains energy equation defining the change of the internal energies shquld
written for unknown dependent value which can be ~ be added to equations (2.1)-(2.6). Let us consider
specified as quantum pressure p, of non-local  this situation in detail. I begin with case when the
origin. particle internal energy is constant.

After dividing the both sides of the continuity equation (2.1) by m, and multiplying by &, this
equation takes the form:

é{gana _Ta[%_'_%'(‘ganaVO)}}_'_

a a

Z 'z Z
+E'{5anavo —Ta [E(ganaVO)_"E'(ganaVOVO)"'

N (2.22)
1 T 1 _4d
+E€al '761—8‘2 naFc(() —ﬁglxnaVO XB:|}=
1
“m,, feRa

In general case if ¢, =const equation (2.22) is the internal energy equation in which the right hand

side of equation migaRa transforms into function E, (s, ). After subtraction of the both sides of
equation (2.22) from the corresponding parts of equation (2.5) one obtains:

2 2
é’{pavo é’[pavo +§ pa]"’ﬂ'(lpavgvo +g paVOJ_thzl) 'paVOj|}+

3
+7_
al 2z 2Pzl T2 T2 a2

RGN 2 +§pv—r (L, vav +§pv +
O,rzpaOOZaO adzpaOOZaO

2L v2vv+zpvv+£p VZT+Epv +
&zpa0002a002a02a0

é (1 2 7 1 2 .5 PG+ ) O .7 2.23
5| 3 PaV0VoVo + 5 PaVoVo +o paVoI+§71 —PaFa’ VoVo—PoFg’ - 1- (2.23)
[24
2

1 2 3 PaVo Ua 5 o
-—p.VoFs’ ——F —————|VoxB|-=p, —|Vo xB -

ZpaOa Zapa 2 ma[OX]Zpama[OX]

o 17 o -

_{pangl)'VO_Ta|:F¢§zl)'(a(paVO)+é},'paV0V0+a'pal_pangl)_qana[VOXB]jo:

m V2 t el m V2 t inel
:17”‘2“»'!;’9 dva+17“2”‘\]§"”e avg,.
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taking into account that:

a

[e,33%v, +[z,33 dv, =& (2.24)

Conclusion: In the case when the change of the
species internal energies is absent as result of
interaction with external media the solution of the
full system of equations (2.1)—(2.6) can be reduced
to the system (2.1)-(2.5), (2.23).

It is interesting to confirm this conclusion by
the direct numerical calculation. With this aim let
us consider the charge density waves which are
periodic modulation of the conduction electron
density. The movement of the soliton waves in
graphene was considered in the mentioned article
[2]. I remind shortly the problem formulation.

The effective charge is created due to
interference of the induced electron waves and
correlating potentials as result of the polarized
modulation of atomic positions. Therefore in this
approach the conduction in graphene convoys the
transfer of the positive (+e,m,, ) and negative (-e, mg )

coordinate system (& =X-Uyt, y). In the

following we intend to apply generalized non-local
quantum hydrodynamic equations (2.1)—(2.6) to the
investigation of the charge density waves (CDW)
in the frame of two species model which lead to the
following dimensional equations [9, 10]:

Poisson equation for the self-consistent electric
field:

5_40@_‘!’_
og?  oy?

{ —(”p(u—uo))}

{ re 2l —uo»}}

Continuity equation for the positive particles:

b2 e, 2oy o-u s

(2.25)

o
0”75['0”(

charges. Let us formulate the problem in detail. The +5{ { ppr§:|} (2.26)
non-stationary 1D motion of the combined soliton a ‘f
is considered under influence of the self-consistent o o
electric forces of the potential and non-potential +5 Tp Epp_Ppry =0.
origin. It was shown [2] that mentioned soliton can
exists without a chemical bond formation. Continuity equation for electrons:
Introduce the coordinate system (&=x-Ct)
moving along the positive direction of the X axis <[, (u, —u)]+-2- { d [pe(u Up )’ ]}
with the velocity C =ug, which is equal to the 24 &\
phase velocity of this quantum object. 0” 0 F
Let us find the soliton type solutions for the 55 o Pe = Pt (2.27)
system of the generalized quantum equations for
two species mixture. The graphene crystal lattice is +5{T{a P, — P, Feyj|} =0.
2D flat structure which is considered in the moving Y| Ly
Momentum equation for the x direction:

o
a—f{PU(U —Ug )+ pf- ppFpe — peFes +

17 17 2
+é}—§{rp{§—§(2pp(uo —u)- ppu(ug —u) )—pprg(uo —u)}}+

17 2
+— Te{_(z pe(UO —U)—Peu(uo _U)z)_ PeFef(UO _u)}}"'

% % (2.28)

o ’

+Tpr¢{0,,§ (pp(u uO))j+TeFe§[é,_§<pe(u _UO))j_

0 2 0 o 0 o 0 J

%{Tp ﬁ—é(ppu)} —a—g{fe a—g(PeU)} —a{fp E(pPU)} _a_y{fe E(Peu)} +

0 0 0 0
+%{Tp[Fp§pp”]}+£{7e [Fefpe“]}Jra{Tp[prpp“]}JrE{Te [Feype“]}: 0.
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Energy equation for the positive particles:
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l
é}—g[ppuz(u —Ug)+2epNp(U—ug)+5ppu —3ppu0]—2ppr§u+

l 2 2 2
ﬁ_g(_ppu (U —u)* =2e5np(ug —u)” +7ppulug —u)+3p,ugu—ug)-
+0’)—§ Tp p p2 -
p 2
—ppu —ng—p— ,D_p —2Fpeppullp —u)+p U Fpe + 28N F oz +5p,Fp
(2.29)
ol |o Pp P
——A7 pu+25—+5 pFu —-2¢eyn,Fy —5p,F -
@,{p@[p P, pp] p oy p"pFpy ppy]}
2 2
_ZTprg{ (pp )} prppk': af) +(pr) ]*
o o Pp — Pe
+22'pr§|:&§ppi|+ZTpry|:@pp:|:— Tep .
Energy equation for electrons:
0
a—f[peuz(u—u0)+2£ene(u—u0)+5peu—3peuo]—2peFe§u+
o
2 a2~ ~2egn,(ug ~u + Tp(ug ~u) 3pyuglu-u)-
o
+OT§ e Pe pz 2 B
— peu? —2£em 5p = 2Fz pelUg —U)+ peli“Feg + 22N Foz +5peFeg
e e
(2.30)

2
i 7 2 p p 2
_Oy{re{@[peu +256mZ+5p‘;]—peFeyu —26¢NgFey —5peFey |1 —

—27¢pe [(Feé )2 + (Fey )2 ]+

o o Pe — P
+21eFe§[é’§ pe}+ZreF3y{@/ pe:| :_%.
ep

Let write down these equations in the
dimensionless form (see also [2]), where di-
mensionless symbols are marked by tildes;
introduce the scales:

E=X&, Y=X¥, ¢=000,
Pe = PoPe Pp = P0oPp

u=ugu,
(2.31)

where ug, X9, ¢p, pg — scales for velocity,
distance, potential and density. Let us introduce
also

Pp = pOVOZp 5p » Pe = pOVOZe Pe » Where VOp and VOe
— the scales for thermal velocities for the electron
and positive species;

~ e _~
Fp=F 20 F, =F, 20,
meO meXO -
_ meXOH _ XoH ( ' )
mpUOGZ e Uolﬁj‘2 ’

NR” _ js dimensionless parameter.
MeXoUg

Then - Y U= [1, Mo |
Tep X0 H Mg

where H-

Let wus introduce also the following
dimensionless parameters:
2
eopX e

Me®Po mMeU3

and dimensionless parameters characterizing the
internal particles energy:

289 25p

Se: ’Sp:

7 (2:34)

meu? mpUg

Acting forces are the sum of three terms: the
self-consistent potential force (scalar potential ¢ ),
connected with the displacement of positive and
negative charges, potential forces originated by the
graphene crystal lattice (potential U ) and the

external electrical field creating the intensity E. As result the following relations are valid:

e op oU op oJU
Fo=— |- % B |, Fo=— |2
b mp( o&  of O‘f] e (ag Ea

Eogj (2.35)
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e ( 0p oU e (0p U J
Fo=— |- % |, Fy =22 % g 2.36
e R e e @39

or in the dimensionless form:
~ op U =~ = o8¢ U = = ¢ U =~ =~ ap oU
Fy=————%+E ,F =—t—— ,F :—_.._,——___+E ,F =—+t—- . 237

Graphene is a single layer of carbon atoms densely packed in a honeycomb lattice.

Taking into account the introduced values and approximations acting forces along Y - direction for

graphene (all details of the corresponding approximations are delivered in [2]) the following system of
dimensionless non-local hydrodynamic equations for the 2D soliton description can be written in the first
approximation:

Poisson equation for the self-consistent electric field:

25 _ _4,ZR{£[ PR RPN _1))] _{59 _uii(;e @ _1))}. (2.38)

oc? Mp

Continuity equation for the positive particles:

=5 —a)hﬁi{#i[ﬁp(a—1)2]}+ﬁi{%{v°—pi Po -
p u

& mp & (G2 & mp & |G?| u@ o (2:39)
~ > . (4r ~ '
_ rr:‘; ppE(——..—i-UilSIn(%f —%)H}:O
Continuity equation for electrons:

O~y ~q 0 [H =~ 2l 6 |H|VE 6 -

! “)]+a¢{‘u*2 P2 2 )]}Vg’{ﬁz[ué Z" (2.40)
5 e[ %2 _Grsin[A2E )|l 2 |
peE[ag Ullsln(sé_g SJH} 0.

Momentum equation for the x direction:
o (= = \ye Vép - VA - | me - 05 ~ . (4r= =
O’,—g{(pp+pe)J(u —l)+¥ Pp+ u% Pe —mp PpE —£+Ulls|n[£§_€j _
S E 6(} J, . 4 ~ T Mme 17 H 7 2V02p ~ (1 ~) ~ ~(l ~)2
TreRleE PN T ) m, E |a | | P P e
_ 2: 5p(1—U)E[—(£+L71’1 sm[‘;jg—g)ﬂ}+
2B 2 (Ve s a_g)-550-a) |-5a—0)E 22 _Gr sin( 42z _7
R O e 3m}+
2
Hg[me | (292 G0 sinf[22z_ 2 2 (3 @G-
+[IZ E[’“p}[ Py +Ullsm(35§ 3))[0”5(pp(u 1))J+ (2.41)
H (92 _Grsin(42z 7| 2 _1)|-
v 2 E[a~ Uggsinl —=¢ 3]](55('06(“ 1))]
o
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Energy equation for the positive particles:

6|~ oy . Vé, - - V& -
~{ o020 -1)+S,p, (@ —l)+502pppu—3lj)2ppp1—
0

0”§ Upg
- E,BPE —a—?+ﬁilsin(4—fg—£) U+
mp o& 3a 3
2
| H mg| &2 ~ ~2 ~\2 ~ =~ 2 Vop ~ ~ ~
el | - 5 0% -0) Sy p, (- + 7P U -0)+
a«:{uzmp{%{ P P ug "
Ve, V& v vé B2
+3u72ppp(“ —1)—f;pp”2—ffsppp—5ff7p +
0 0 0 0o Pr
2 -
Mg = ~ ~ Mg~ ~2 M - me Vop — o
+E|—2—Sp,00-0)+ eppu2+—eSpppp+5 e—zppp -2
Mp Mp Mp Mp ug o5 (2.42)

2
~ . (4r =z H m O (~ ~ -~
+U{ysin| —=¢& - = +2—E| —¢& ——l\p,u@l-0))+
11 (3a§ 3jﬂ} 52 {mpJ{ é,g(Pp( )
V& s - ~
+L2pi5p [-6‘.’i+ul'1sin(4’f§—”j}—
u@ o o 33 3
H me )’ op 4 2 2 2
- ~, . Tz -, . T T
ZGZEZ(mZJ pp|:(6§+Ullsm[3é—§3jj +E[Ulos|n[§§ +§j] +
2
3( .~ 27 = - 2. 16(~, -~ 27 =
+ E[Ulo cos(éej + %D + 6(U11) + 7(U10U11)cos(3—ﬁ§ + %H =

~2
u 2 = = \,2 Mp
= (VOppp_peVOe{lJrrn )

Hug e

Energy equation for electrons:

|~ ~2(~ = (= Ve = = Vee = ~ = (09 5, (47[ z ﬂj
—_ u“(u-1)+S u-—1)+5——=pu—-3—— —2pUE| —<=—-U{ysin| —=& —— | [+
Y0 5055 57 -2Y 5, |28 22 - (222

0’75 Ug
L ORI oL S a2a G s, p(@o1)? +7Y08 Bua(-T)+3Y0 B (@ -1)- VO pa2
5§ 1]2 ag e er’e ug e ug e ug e

4 =2 2 > ~
Ve 5B, —5Y0e Pe | Bl _25,0(1—0)+ 5ol +Sepe + 502 b, %—uilsin(“é{g—ﬁn +
Uuo Ug Pe ug o& 3a 3

- - VE _ 5 o~ . ~
(oaa-a)r 2t VE 2 5 ][Wu(g”f )

(2.43)

G2 ug o )\og

- 2 2
_2E?2 ;5{[—22’_+uh sin(:—gg‘ —’;j] +%[u1’o sin(%g +%D +6(01, f +
- - 2 - - - 52 m

+%{U1'0 cos(g—gf +%D +%(U1’0U1’1)cos(§—;f§ +Zﬂ = —:7%6/026 Pe —Vép 5”{1+m:}

The calculations are realized on the basement  D(u)(0)=0 means in the usual notations
of equations (2.38)—(2.43) by the initial conditions o ) )
and parameters containing in the Table 1. The vast E(O) =0, independent variable t responds to ;-
results of the mathematical modeling realized with
the help of Maple (the versions Maple 9 or more  The solution exists only in the restricted domain of
can be used) can be found in [2]. Here I discuss  the 1D space and the obtained object in the moving
only the calculations of the mentioned Variant 1. coordinate system (&=x-t) has the constant

The following Maple notations on figures are  velocity T =1 for all parts of the object. In this
used: r —density p, , s — density 5, , u—Velocity U, p  case the domain of the solution existence defines
the character soliton size. The following numerical
) o ) results (Table 2) demonstrate the realization of
consistent potential ¢ . Explanations placed under  mentioned principles. Figures 1, 2 reflect the result
all following figures, Maple program contains  of calculations for Variant 1 (Table 1) in the first
Maple’s notations — for example, the expression  approximation.

— pressure p,, q — pressure p. and v — self
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Fig. 1. s — the electron density p, ,
u—velocity U (solid line).

Fig. 2. r — the positive particles density,
(solid line); p — the positive particles pressure.

Table 1. Initial conditions and parameters of calculations for Variant 1

a C T 20 50 B % B0 Bp0)  #0)
U ()
1 1 2.104 1 2.10% 1 1074 1 2.10%
__em _epxd H @0 @ e aﬁfp _@ U4 lj'
T e oz z 0 o © 20 K= o0& © . H
0.1 0.003 15 0 0 0 0 0 10 10
Table 2. Numerical results of calculations for Variant 1(s, = s b= 0)
t=g=0.2 t:g:0.25
p=p, 21731.595 22164.607
b=, /0Z 8660.254 8660.254
a=p, 0.956424 0.925592
q = aﬁe/aE -0.476250 -0.859321
r=py 0.622976-1073 0.407662-1073
r'=0p, [0F -0.593701 -0.308647 102
s=p, 1.866551 4.681384
s'=0p, [0F 18.453042 170.620851
u=ua 1.000000 1.000000
V=0 1.000819 1.0013853
V=050 0.909275 102 0.143210.10*

Now I can formulate some principal conclusions:
1. All calculations realized as Variant 1 and
containing in Table 2 correspond to spin variables
Se=5,=0. The domain of the soliton existence is

equal to E varying in interval (-0.305, 0.274).
2. All calculations realized as Variant 1
corresponding to constant spin variables S, S

varying from s, =5, =010 s, =5, =10° lead to the

absolutely the same results shown in Table 2. The
domain of the soliton existence is also equal to (-
0.305, 0.274).

3. This fact confirms the previous theoretical
result - in the case when the change of the species
internal energies is absent as result of interaction
with external media, the solution of the full system
of equations (2.1)-(2.6) can be reduced to the
system (2.1)-(2.5), (2.23).

4. These calculations realized by several
numerical methods are the direct evidence in favor
of high accuracy of numerical methods in the

interactive Maple system for solution of the
ordinary differential equations.

3. The charge internal structure of electron

Let us consider a negative charged physical
system placed in a bounded region of a space.
Internal energy &, of this one species object and a

possible influence of the magnetic field are taken
into account. The character linear scale of this
region will be defined as result of the self-
consistent solution of the generalized non-local
quantum hydrodynamic equations (2.1)—(2.6). In
the following | intend to suppose also that the
mentioned physical object for simplicity has the
spherical form and the system (2.1)—(2.6) is
reasonable to write in the spherical coordinate
system [20, 21]. Remark also that the terms pg,,

paes P9, correspond to the components of the

mass forces acting on the unit of volume. For
example, for the potential forces of the electrical

origin =m.n =—mneE=—neE= v,
mr e gl‘ e m q ar

e

It means also that in the following q is the absolute value of the negative charge per the unit of volume.
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We have:
non-local continuity equation:

é’{p_T[O%Jrl@(rzpme 1 Apvo,), 1 a(pvoesiné)}}+

a a r? or rsin@ oJo¢ rsin @ o6
1 o 2 |z 1 S(r'zpvozr) 1 G(pvoq,vm)
Y7 or {r {pvor T|:0’t (ovor )+ rz or T rsino o -

1 d(pvoeVor sin®) q B 1 0 o
rsing PY) Ay mP(Voa:Be V095¢) +—rsm96(p Aogp — (PV0¢)+

2 2 .
+ L a(r pvorvoq,) bt é(pvo@)+ 1 a(pvong o 0)—/39(# _%P(Voa Br —VorBg )}}Jr

r2 or rsind op rsing o0 (3.1)
1 0o 1 6(r szOrVOH ) 1 a(pVO¢V09 )
sin @ - + + — +
rsm9 69{ {p\/og T[ (ovo0) r2 or rsiné op
1 8(pv§95in6’) q
+ - ——plvgrB, —Vo,B -
rsin@ 00 Mo mp( or=e — "0 r)
f%i[ﬂza—p]f—z 1 9 [ sin & p] > 1 > 9 [ 6pJ 0.
ré or or rsing 00 o0 r¢sin“ g op\ OJgp
Non-local momentum equation (e, projection):
e e 1 5(" PVOr) 1 a(pVO:pVOr) 1 a(pvoeVor sin O)
{pvc,r T|: (p\/c,r) or +rsinH op +rsin¢9 o0 -
+%*pgr *%P(Vo(pBH*Voan)]}*
oo 1 a(rzpvc,r) 1 B(pvo(,,) 1 3(pvge sin©)
— 9| o—7 E-l——z E -+ - -+ - —
r r rsin @ op rsin @ o0
2 2 :
_a |2 ia(r pVOrVO(p) 1 a(p'\/o(p) 1 6(pvo,9v0¢,sm9)
m[pvo,/) T[a‘t(pvo‘/’)+r2 or trsino o *rsino o0 *
1 @
+rsm¢90”¢ pgq,**P(VoeB *VOrBe)DBeJr
a —2 ia(" PVOrVoe) 1 3(pvopvos) 1 a(pvg,gsine)
+m[pv0‘9 T[ (vo0)+ 2 or +rsim9 o +rsin¢9 *
1
?%,pgg ,ﬂp(VOrB(p —voq)Br)JJB(/, +
2
1 0 2 2 0 2 1 6(r2pv(3)r) 1 a(IOVO(pVOr)
+—=—Ar —7| = + + +
2 ar{ {var T[at<pvor) 2 or rsing  op
1 6(/7\/09V§r sin 9) q
-2 —2— By — B
rSing 20 9rNVor mp(VO¢) 6 —Voe (p) + (32)
PRI SV a(pv y )+i6(r /7VO¢VOr)+ 1 8(m§¢vOr)+
rsin@ ogp O 0r Optor /™ 2 or rsin@ o

1 3(pvopVo,Vor sin0)
rsiné@ o6

q
— 9y NVor _EP(VOHBr —Vor By Vor —

—%pVo(p (Vo(p By — Voo By )— Vop P9y }} +

a(r 2 VoeVar )+ 1 a(pVO(pVOHVOr ) .
or rsin @ op

+ 1 isin6’pv \7 —rg(pv \ )+i
rsin@ 0o ogVor ot ogVvor r2

1 a(p\/SgVOr sin 8)
rsin @ o6

q
+ — 96 Vor _HP(VOr By — Vo, Br )"Or -
q
—VooP9r —EP(Vofp By —Vvos B, )‘/09 J}} +

+@_§(T@)_23[{ia(#va,)+ 1 opve,), 1 a(pvogsine)ﬂ_
;

or ot or r2 or rsing@ og rsin@ o0
_%g[ﬂ,Z a(pVOr)) 1 a z.Slnea(pVOr) 1 - G(pVOr) =0.
r<or or r?sin@ 00 oo r?sin 96(/7 op
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Non-local momentum equation (e, projection):

P P ol\r < pvg, v 1 8pv2 1 a(pv \ sin6’)
_{pvow_fl (pvo‘”) 2 ( a?r Ow)Jrrsin@ (8:¢)+rsin¢9 Ogazo ’

1
+rsm9?; pggp—&/?(voaB _VOrBQ)}}
~ { [5;3 (r pVOr) 1 6(pVo(p) 1 d(pvge sine)ﬂ_
g(p pP—T——+t— 2 - +—
a r or rsind oe rsinéd 00
_9 A2 ia(rszOrVoa) 1 8(/‘No(o\/oa) 1 6(pv§,,sin9)
m(pvw r[d(pvoa)+ r? or rsing o TYsine o0
1
F%_pr ﬂ (VOI‘qu VO(pBr ):DBr +

q 42 1arpd) . 1 AVoVor) 1 B pVoyVy sin0)
+m(pV0r r[d(pvm)+ 2 or rsing op T rsing 00 "

10 0
+%_Pgr q (v B, VOBB(/,)DBg+r2ar{rZ{pVOrva—r[at(pVO,v0¢)+

+i6(r /)VOrVOzp)_’_ 1 a(lavgszOr)_i_ 1 a(IOVO:QVOrVO(p Sine)_
re or rsin@ op rsing o

—0,Vo, —VorPY, — q (V By —VosB, )\/0<p VoaBr Vm&))"m}}}*‘

TR PN )

rsiné op or rsind op
2 .
1 (pVOHVqu sin 9) q
+ -2 -2 p(vgpB, =V, B +
rsin® 00 99 Mop mp( 00 5r —Vor 9)\/0(/;
2
1 2 Sin 6< PNogVo, — T a(p\/ v )+ia(r P"’OrVOQVow) 1 6(pvo¢,v09)+
"rsing 20 w0 00700 2 or Trsing . op
1 G(pvogvow sin 9) q
+ - —— plvo, B, —Vo,B -
rsinég 00 9oPog mp( 0r=p — Y0p r)’o(p

1 0 1
—Vog e _%P(VOHBr —VorByg )\’00}} P ( j

rsind dp rsiné op

_ 2 i[{riza(rzpvm)Jr 1 a(va(/))_i_ 1 pVOg SInH ]

rsind op or rsind og rsind

10 2 a(pVng) 1 5 (pVO(p) 1 pVO(p)
- o rsing - T
r2 or or r2sing 00 oo rsin o 5(P op
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Non-local momentum equation (e, projection):

é _ é ia(rzpvmvog) 1 a(pVO(pVOQ) 1 a(pvje sin 9)
a {pvw {ﬁ (pV00)+ r or i rsind oe i rsin@ 00

1
+7%_pgﬂ % (VOI'B(p VO(pBr):|}

—g{p {02? 126(rzPV0r)+ 1 8(W0¢)+ 1 6(pv0€sin49)ﬂ_

r or rsiné oge rsin@ 00

_9a 42 1) 1 AlpVe) 1 a(puyvysin6)
m[pVOr T[d(pvor)+r2 o rsing op T rsing 26

?rp P9, —%p(vO(ﬂBe —VOgB(p)DB(p +
4
m

(pvw { (pvoq))Jriz8(r2;0VorVo¢)+ 1 6(/”@)4_ 1 G(pv09v0¢sin¢9)+

r or rsind og rsinéd 00
1 & q 10 2 0
* rSinG dp —P9, VB, —Vy, B )DB +_8_{ {pVOrVOQ _T[a(pvmvoe)"' (3.4)
+i8(r pVOrV06)+ 1 a(pVO(/)VOrVOH)+ 1 6(pv09v0rsin 9)
r2 or rsiné op rsiné o0

—0r Moo —Vor e —%P(VowBa _VOHB(p)‘IOH —Vor %p(VOr By _VO(/)BI’):|}}+
1 a(pvgevo sin¢9) q
+ rsing 6; _gq;pVOH_E:D(VOHBr_VOrBH)VOH_

VOC”%'D(VOqu) V,,, B )

Op —r

a 2
o A ),

r? or rsind  og
1 alpvi,sing) g } Jlop 1 a( 8pj

+ —20,MNgy— v, B, —v, B =K _ = 9P
rsing 00 9oPloo mp(Or o Voo roo rool at

rsiné oo rsing o6

1a(,rza(pvog)j L2 csing (pvog)j_ 1 a(,amvw)jzo
reor or r?sin@ 66

00 r’sin’ o ogp o

_Ei(r[ia(erVOr)+ ! a(pvo¢)+ 1 6(pvogsin¢9)j}_
reg\ \r*> or
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Energy equation:

élpvz+5ﬂ+§p—r££p\/2+éﬂ+§p IRERLH L ip\/2+éﬂ+§p +
a2 2 al 270 2 2orl or(2f0

—P(ngOr +9yVop t geVoa) }} +

o

rsiné@ o0

1 2 3
*P(ngOr + 9»Vop +99V09)‘/0r - E/jVO +éﬂ+§ P |9r —

1 1 ]
[ p\/o +en+ — pj g (Vong —VogB ):|}}+

+ —_ lp\/2+gn+zpvv +;i
rsin@ epll 27 ° 2 00 70r

1 0 1, 5 1 8. 1, s
Y - 2 2 lsingvn,| = 2all=
T rsing 6(0(\/0“’(2’0\/0 Tty DD+ rsing aé)(sm 09(2'0\/0 s pD

2

—_— 1,o'\/2+m+5pv -
rsing o |\ 2°7° 2" )0

a((1 , 5 101 7
_TE Ep\/o+&‘n+§p v0w+r—2§r o Ao+t P NorVop |+

2

s 1 7 pv gn+zpv2 +Lisin91pv2+an+zpv Voo |-
rsind dp 0 FNTS PN ¥ Sineg a0 2170 2 ") 00700

1 5 3
—p(ngOr +9¢Vo¢;+99V00)/o(p— EpVO +gn+§p 9p—

1 5 1 o
_(Ep\/§+m+§ pjr?](voaBr_VOrBe):G"' i 7{

rsin@ o6
o

- (v+v+v)—fgg(ﬂ\/)+i
P 9 Vor +9,Vo, + oV otV or 2

L (pvoevo 5|n0)+——pg
rsin@ 66 ’ r

rsing op © 0°

op

1 0

e i S oo
1

7
( B g[ (Pop)+—5—
I’SII’]H%_pg —an Voe — Vor 9) + Y6 00 25

. 1 5

sin 9{[5,0\/5 +m+E ijOg -

-7 — pv+sn+5pv +10” zipv2+gn+1pvv +
a 0 00 2 a 2 0 2 orvoo

+ 1 7 ipv2+sn+1pv Voo |+ ! isin¢9(lpv2+en+1pjv2 -
rsind dp\\ 2" ° 2" 70700 1 sing 20 2770 2" )00

1 3 1 5
_P(ngOr +9,Vo, + gevoe)‘/oa _[vag +en +E pjge - (Ep‘lg +m+§ p]%(VOrB(p —Vo,Br )}}}_

r g(rzpvgr)‘* 1 0 (p‘/O(p Or)

rsiné oo

0
T sing op (pvo(/, 09)

. 10
+ oin 9%('0\/59 sin 0)+ Fﬁ_pga - qn(VOngo —Vy,, B, ))}}_

2
tof2ofLa, 0, 50%)]
r2 or orl| 2 m 2 p

op

0 1
rsin 9%(“)9“’) rsmeﬁ(mgg sing)=0.
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SN SN UV YO S-S | IR SN (NI S S-S S | N
rsing 00 00| 2 m 2 p r<sin® g op 2 m
1 0
r

1
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(sm G(Epvo +én +E pjvogvo,r J -
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Let us point out the important particular non-stationary one dimensional case corresponding to the negative
charged system evolution in the potential electric field:

(continuity equation)

2 o 1 8(I’2pv0r) 10 a 1ol ) ow |||

Lofem)
Zar or

(momentum equation)

2 2 2
g{ ﬂVOr) 1 alr?pvé, +Q_q3_'/'}}_&a_‘/’{p_{5_ﬂ+iéﬂm+

(3.6)

2 or a or

10 0 1 alr2pvd 0
_28_{ Z{PVgr T[&(ﬂ&r)+r—2lﬂ)2q—wvo&}}+ (3.7)

+

or or

+a_p_£(,[@ _2£ ia(rzpvm) _ 10 Za(pVOr) -0
or orl ét orlr2 or r2 or or '

(energy equation)

}— 7L v + (3.8)

Assume that non-stationary physical system is qld ow B -0
at the rest, namely vo, =0. Taking into account — “y 5 95 [P =7 (3.12)
also the forces of the magnetic origin one obtains

; energy equation
from the system of equations (3.1) — (3.5) for the (energy eq )
non—s.tatl.onary on_e—dlmensmnal (along r) case: a m+§p_rﬁ(m +§pj =
(continuity equation) a 2 a 2
1 0 alp 5
of | .1 0[af 0w o). —__(#_{_(m_pm_
— - +—=—r ———1]=0, , 2
d{p ‘ o‘t} r2 ar{ T[q or 8rﬂ (39) reor ole 2 (3.13)
1 0] » q oy

(momentum equation, e, projection) T G L e
ol oy qow a _Tﬂa_‘/’(@_q@_‘/f}
Y i el Enbeu Dk el p or \or or
a or p or a

6 ap (3:10)  \where ¢ is the internal particle energy. To the

p-7—|=0, system of equations (3.9), (3.10), (3.13) the Poisson
ot
equation should be added:
momentum equation, e, projection 1 0 b
( g o Projection) _2_[2_1//j:4ﬂq, (3.14)
re or or

ﬂ,[%_qéa_‘/’}sg =0, (3.11)  where y - scalar electric potential and q is the
m ' absolute value of the negative charge (per the unit
(momentum equation, e, projection): of volume) of the one species quantum object.
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4. The derivation of the angle relaxation
equation

Let us consider an electron which is at rest at
the time moment t=0. This electron has the
internal energy ¢ (see also (2.20), (2.21))

€= &gl sp tEel,m 4.1)
containing the spin and magnetic parts, namely

Eelsp =hwl2, e =—Pm B, (4.2)
P, — electron magnetic moment, B — magnetic

__en

induction. But p, and relation (4.1) can

e
be written as:

h
e=—|w+
2{

e
meC

Bcosg}, (4.3)
where the angle 9 reflects the possible deviation
between a separated direction of the spin at the
initial time moment and the direction of magnetic
momentum after an external perturbation. For
example this perturbation can be considered as
result of the approach of the second electron to the
previous one at the distance r,, with appearance of

the virtual photon with the wavelength:

ﬂvph = 27fip. (4.4

The fine-structure constant ¢ has the physical
interpretations as the ratio of two energies:

(M the energy E. needed to overcome the
electrostatic repulsion between two electrons a
distance of r;, apart, and

(i) the energy of a single photon of
wavelength A, = 2zt .

Taking into account the previous remarks let us
consider the charge time evolution inside of the
first electron. In principle we need to solve the
general complicated system (3.1)—(3.5). It is
reasonable to obtain much more simple solution
using the perturbation method. Namely, all
unknown functions can be expanded in a Taylor
series like:

9
P =po {Epl t At .. (4.5)
=l

In particular we need to find the time derivation
of the value &¢ =—pm-B and therefore the

derivative with signs reflecting two possible

projection orientations i%cos 9 =Fsin .9%—;9. The

derivative 24 is written in the relaxation form:

(4.6)

69

As it was supposed the deviation of the
magnetic moment from the spin orientation is result
of the approach of the second electron with impulse

p to the first electron at the distance r;, . In this case:

1_p

TS 4.7)

where 4 ~r;, . After introduction the coefficient s,
we have rj, = As and

1
Zos P 4.8)
T Melin

It means
09
" . (4.9)
ot Melin
or

2

%_s 27 P =S 2z E.. (4.10)
ot Prin 2mMe Plin

Let us introduce now the fine-structure constant «

E
a=—C (4.11)
E ph

and transform (4.10)
98 _ 27 ooE 412
ot prip ph » (4.12)
99 _ 2—”806 — 4.13
ot h ph lin l ( ' )
and using r, = As one obtains

. 2 . .
xsin 9%:i%aEph sin 9 = tawj, sin 4. (4.14)
or
09
EZQWin y (415)

where ;, is the photon frequency which the wave
length is 2ar;,. But
2

e
==, 4.16
P (4.16)
It means, that equation (4.15) takes the
transparent physical form
2
o8 _e" 4.17)
ot hrin
5. The mathematical modeling of the

charge distribution in electron

Let us deliver the derivation of the non-local
equations in the first approximation. From (3.9)-
(3.12) follows

)
a

oy

= (5.1)

—q



Transform the energy equation (3.13) using
(4.14), (5.1), (see also (2.22))

+—n Baw;, sing =
2 e
10 20| p 5
= — = an+— —
2 8r[ 8I’{p( 2pm (5-2)
_%g{ﬂz(mép]ga_w}
ré or 2 )p or
or
+hn—Baa),nr sing=— (ﬂ’ pag}
2 mgC or m or
(5.3)
55( 2 G[pD
+——|ap—|—||
20r or| p

Naturally to suppose that a— =0 and non-local
r

parameter 7 does not depend on r, then:

r%[rng[ﬂ} (5.4)

Using the relation p:mﬂ, scales ry, pp. o
e

iinBaa)ian sin 9 _>
2c

for the values r, p, g and denoting by tilde the
dimensionless values one obtains

vl o

Introduce the notation I§ for the dimensionless
coefficient

2.2
i T _ -
isilBﬂo—goasmS d=
Cc € T Po

B=—= sin @, 5.6
5¢c e T Po ( )
we have
0f=2~01Dp ~_o.
—|r —|=||=%Br :
ar[ par {qD a ®.7)
The Poisson equation (3.14) takes the
dimensionless form
0 2 61// ~2~
A— r , .
or ( or ) a (5:8)

where the dimensionless coefficient A is introduced

A=—"0
4y o

(5.9)

w Is the scale for the potential i .

In the absence of perturbations B=0 and from
(5.7) one obtains

p=Cq. (5.10)
From (5.7), (5.8) follow also

O~2~01|P =~ 0 (~2 6\1}

—| r'p—=|=||=tBA—| r°*°— )

ar[ par[qD ar( ar) (5.11)
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Write down the equation (5.1) in the
dimensionless form
Py 3 oy _
Qovo OF o 12)

and introduce the obvious relation between scales
for the simplification

Po =1,

5.13
Jdo¥%o .13)
then
D~y
—-0q—==0. 5.14
or a or ( )
and
~ : 2
B= Bh‘”—'“%asins. (5.15)
7 Be
Yo
Using equations (5.11), (5.14) it turns out that
P oln p p oq
+BAL " -,
or o qeor (5.16)
a p 10Inp p
| +BA— =0,

then the second term on the left hand side of Eq.
(5.16) reflects the influence of perturbation.
Omitting this term we return to the relation (5.10).
Before going further some points need to be
made about so called the *“classical electron
radius”. This is a calculated radius based on an
assumption that the electron is the empty charged
sphere a certain radius. It has a value of ry =

2.82-107°m obtained as result of calculation by
equating the potential electrostatic energy e?/ ry to

the energy of rest mecz. Now compare this radius
with the measured radius of a proton, which is

1.11-107®m. There are several sources with
different values, but they appear to be around
107**m. According to this an electron has a radius
2.5 times larger than a proton. Given that a proton
is 1836 heavier however, it’s difficult to know if
we should take this “classical radius” seriously.

Write down once more the system of equation
which was used in the mathematical modeling
(SYSTEM 1)

0(=2-01|Pp ~_o
—| r -\ = =BI’ 1
ar( pﬁfLD !

ov or
0V B _,
or or
where
A= l//g , B=+ hin rozasin.9
471y do © Seyq
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Some significant remarks:

1. Solutions of SYSTEM 1| belongs to the
class of Cauchy problems and need not in
introduction the strictly defined the electron radius
beforehand.

2. From here on for convenience the different
signs were included in B .

3. The mentioned classical radius r, is only

one from possible scales.
Really, from (5.8) follows that the absolute
electron charge g is equal to

Gy == T4m2q(r)dr = 4m03qOTFZadF =
0 0

el a _ a& _
=4mlq Al =| 7* =% [dr =
0h !ar( arj
: y (5.18)
10 (=, 6(//)(:'.~
I ey r - r =
O%}[ar ( or
~,| Oy
=y il —|
oWole [6? l_rl
or

a&}

— =1. 5.19
|:6r r=ry ( )
for the scales choosed as
Yo =|E|/r0, lp="re» do =|E|/re3i ,

e? (5.20)

Po =do¥o =—; -

Fel
In this case
6w} el
- =—, 5.21
|:ar r:re| r02 ( )
or
2
e

[F]r:re| = (5.22)
]

But in the definition of the fine-structure
constant « the energy E. was introduced as the

energy needed to overcome the electrostatic
repulsion between two electrons a distance of r,

apart (see also (4.11)). It means that for this
problem naturally to put the scale r, =r; . In this
case (system of conditions SYSTEM I1):

Vo =|e|/r0 » Io =Tins Yo :|e|/ri:f31'
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Po =do¥o = ez/riﬁ :

_W%o _1
Amfqy A7

4
hw—i”ri—”asins.
c 5|e|3

B-+B

Parameter (5.15) can be rewritten as

- 4 3
B:J_rBha)'“ fin_sing=+B-1N_sing. (5.23)
c 5|e|3 5|e|rc
Let us introduce the character magnetic force
o r
= b Bl 1 5.24
M~ ¢ 57 ( )
and the character electrostatic force
02
Felect =5 (5.25)
fin

It means that parameter B can be written in the
transparent physical form

~ F
B=_mag

elect
Is it possible to obtain the soliton type solution
for this object under these conditions? Let us show

that the System | admits such kind of solutions.
All following calculations are realized under

conditions SYSTEM I (in particular by A=4i,
T

sing. (5.26)

different B and initial conditions). The influence
B is investigated from zero up to value ‘ﬁ‘ =10.

Maple notations are used (v =y, D(v)(t):aa_":,
=

q=§, t=r, B=B). Cauchy conditions for the
calculations reflected on figures 3-20:

W0)=0)-1, DW= £(0)-0;

&)

0;

q(0) =3(0)=1, D(a)(0)

0.

p(0) = B(0)=1. DE)O) =-20)

Figures 3-5 correspond to the case when the

angle 9 is nil and then B =0. Solutions in all
calculations exist only in a bounded region of the

1D space. The size of this region I, defines the

electron radius. For the case B =0 one obtains
Tim = 0.9235.



B=0
100 q

0 T r )
i 05 1 15
1

Fig. 3. p= p(F), B=0.

B=0

100 4

R

&0

q

0

20 J

0

0 05 1 15

1

Fig.5. q=§(f), B=0.

B=0.001, ¥-solid line
1004 |

% DCam |

1}

T 1
1] 0.3 1 L5

Fig. 7. v=y/(r), D(v)(t):%(F)’

solid line v=y/(F), B =0.001.
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B=0, ¥-sofid line
100 |

D) |

o

Fig. 4. v=y(F), b)) = %m '

solid line v=(F), B =0.

Bl 001

100
R (

Fig. 6. p=p(f), B =0.001.

B=0.001
100 4

a0

60 4

Uk

i}

T T !
0 05 1 15
t

Fig. 8. q=q (), B =0.001.

For the case B =B =0.001 one obtains also fjim = 0.9235.

B=001
100 4

80 o

60

204

1}

T T ]
0 05 1 15
t

Fig. 9. p= p(f), B =0.01.

B=001, v-solid line
100

w Do |

1}

Fig. 10. v=y/(r), b)) = %(F),
solid line v=y(F), B =0.01.
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o

Fig.
For the case B

v, Do)

B=0.01

11. q=g(F), B =0.01.
=B =0.01 one obtains Fjjy, =0.9239.

B=04, v-solid line
100 5

|
|
|
20 ‘
|
|
a - |
|
|
PE ;
J

!

20 4 j

/
> s
0 ==
0 0,5 1 15

Fig. 13. v=y(F). b0 =2 M),

solid line v=y(F), B =0.1.

For the case B

100 4

o

100 4

o

For the case B

=B =0.1 one obtains T, =0.9272.

B=1

T T |
0 05 1 15
t

Fig. 15. p= p(F), B =1.

T T !
0 05 1 15
1

Fig. 17. q=q(r), B =1.
= B =1 one obtains Fj;, =0.9614.
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100 4

]

T T !
0 05 1 15
t

Fig. 12. p=p(f), B =0.1.

100 5

T T 1
0 05 1 15
t

Fig. 14. q=§(f), B=0.1.

Bel, v.anlid line

1004 |
|
o1 |
|
|
i |
) |
, DOV |
& |J

II

0 ;

’_,r.
A
] e .
o s 1 L5

Fig. 16. v=7(F), D=2 (),
solid line v=y/(F), B =1.

B=10
1004

Fig. 18. p= p(F), B =10.
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B=10, v-solid line B=10
1004

1004

80

0+ |

DD !

204
a0 /

s 1] - T :
0 : ; ) 0 03 I 15
0 05 1 L5 4

Fig. 19. v=y(F), D)) =%—f(?)' Fig. 20. q=§(F), B =10.
solid line v=y(f), B =10.
For the case B=B =10 one obtains Nim =1.4397.. Calculations reflected on figures 21 — 23 are realized by

conditions SYSTEM IIl: B=B =0.1, v(0)=(0)=1, D(v)(0)= ‘Z—rf(o) =0; q(0)=§(0)=0.1, D(q)(0) = Z—g(o) =0,

p(0) = B(0)=001, DRIO) = L (0)-0.

B=01 B=0.1, w-solid line
1004 100 ‘
|
|
804 804 |
|
0 604 #
P w DA :
a0 0 I
|
|
. 20 |
//
a —J DD D‘5 1‘ = ll5
Fig- 2L p = p(r), B=01. Fig. 22. v=i7(F), DW= 2£(),
solid line v=y(F), B =0.1.
B=01 B=-001
100 - 1004
80 20
60 &0
q 3
40 4 40
- 04
0 a T T 1
1 0 1 15 0 05 . 1 15
Fig. 23. q=G(F), B=0.1. Fig. 24. p= p(F), B=-0.01.

For the case SYSTEM Il one obtains T, =1.44 .

Figures 24 — 38 demonstrate the results of calculations for the negative values B =B but for the
Cauchy conditions:

v(0)=y(0)=1, D(v)(0) :‘2—?(0)= 0; 4(0)=d(0)=1, D(g)(0) :g(o):o. p(0) = p(0)=1,
&P

D(p)(0) = —=(0)=0.

or
74
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B=-001

10 4

v
| J
: . . : )
0 02 04 05 03 1

0

t

Fig. 25. v=y/(F), B=B =-0.01.

For the case B = B =—0.01 one obtains Tim = 0.92312.

B=001
100
20
60
9
404
20
0 T T T T 1
0 0,2 04 06 03 1
t

Fig. 27. q=§(f), B=B =-0.01.

B=01
139

| J
v
5
T T T T
0 01 0.4 05 08

o

1
1
t

Fig. 29. v=y/(F), B=B =-0.1.

B=01
100 4
804
60+
9
404
204
1] T T T T 1
o 0.2 04 06 02 1
t

Fig.31. q=q(f), B=B =-0.1.

For the case B =B =—-0.1 one obtains Mim = 0.9198..

E--0.01
100 4
304
604
D
a0
20
0 7 T T T |
i 02 04 05 08 1

Fig. 26. D(v)(t) :‘Z—VZ(F), B=B=-0.01.
r
B=0.1

1004

P

Fig. 28. p = p(F), B=-0.1.

Be=d1
1004
a4
" /
e
a2 |
|
JIJ
04 !
J‘/.I
] R
0 0 04 05 0 1

Fig. 30. D(V)(t) :‘2—?(?), B=B=-0.1.

B=1
1004
a0
60+
P

4
pul|

0 T T T T d

o 02 04 0.6 03 1

t

Fig. 32. p=p(f), B =-1.



Fig.33. v=y/(f), B=B =-1.
B=-1
100 4

30 4

B0 5

204

0 T T T T 1
0 02 0.4 06 02 1
t

Fig.35. q=q(f), B=B =-1.
For the case B =B =—1 one obtains f;, =0.8979.

B=-10, w-solid line

I
04 J
|
ad \
|
|
304 I[
+ DEG |
04 f
/
/
10 /
A
-
=
0 =T T T
0 02 04 06 08 1

Fig. 37. v=y(r), D(v)(t):%—lé_/(f"),

solid line v=y(F), B=B =-10.

For the case B=B =-10 one obtains Nim = 0.6487 . Finally 1 show some results obtained for the case
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B=1
100 4
a0 o
a0 -
Deae)
P
a0+
0 T T T T 1
1} 02 04 0.6 02 1
i
. oy -
Fig. 34. D(V)(t)=—Z%-(r), B=B =-1.

or

B=-10
100 4
a0 4
60 4

P
0
04
o T T T T 1
1} 0,2 04 0.6 08 1

t
Fig. 36. p=p(f), B=-10.
B=-10
2504
200 4
150 4

100 4

Fig. 38. q=(f), B=B =-10.

v(0)=w(0)=1, D(v)<0>=6a—f(0)=0: a(0) =§(0)=0.1, D(q)(0)=2—§(0)=0, p(0) = p(0)=0.01, D(p)(0)=%(o)=0

but for the negative value B = B=-01; compare fig. 39-41 with fig. 21-23.
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B=01

0,54

Deong)

T T T 1
04 04 02 1

t

T
i 0,2

Fig. 41. D(v)(t) :%’(F), B=B=-0.1.

|

1]

T T 1
04 08 1
t

T T
1] 0.2 04

Fig. 40. v=y(F), B=B =-0.1.

B=10.1
401

0

T T 1
06 02 1
t

T T
o 032 04

Fig. 42. q=§(f), B=B =-0.1.

For the last case B = B =—0.1 one obtains fim = 0.6487 .

Some conclusions from delivered
calculations:

1. From calculations follow that electrons can
be considered like charged balls (shortly CB
model) which charges are concentrated mainly in
the shell of these balls. In the first approximation
(when $=0) this result does not depend on the
choice of the non-locality parameter.

2. Electron radius can not be indicated
exactly in principle; its radius depends on physical
system where an electron is placed. It is possible to
speak about the different electron shells connected
with evolution of the charge density, quantum
pressure, electric potential and forces near the
boundary.

3. From the theoretical point of view the
electron size is the size of domain of the existence
of the corresponding solution. The mentioned sizes
Nim are indicated for all considered cases; the

values T, practically do not depend on the chosen

numerical method.
4. The value of 1;,, depends significantly on

choosing of the Cauchy conditions. By the same
Cauchy conditions the weak dependence on

parameter B exists only for the moderate value of
this parameter. If ‘ﬁ‘ is of the unit order or more
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the value 1;;,, may vary very significantly especi-

ally with changing of sign in front of B .

5. The proton-electron collision in the frame
of CB-model should be considered as collision of
two resonators. Curves of the equal amplitudes of
the intensity of electric field create domains in
proton in the form of many “islands” — caustic
surfaces of electromagnetic field which can serve
as additional scattering centers. It can open new
way for explanation a number of character
collisional features depending on the initial and
final electron energies without consideration
partons or quarks as scattering centers, [11].

6. This results should be taken into account in
the theory of the single floating electron been
isolated in a Penning trap (see for example [22,
23)).

In this connection another interesting problem
is arising. Can be experimentally confirmed the
resonator model for the electron? In this case it is
reasonable to remind one old Blokhintsev paper
published in Physics-Uspekhi as the letter to Editor
[24]. He considered the process of the interaction
neutrino v and electron e with transformation of
electron in x# —meson v+e — x+0'". In this case

the energy density W can be estimated as

W= 9*178‘//”(/70‘//0' ) (5.27)



where g* is Fermi constant, ., W Y, are

wave functions for electron, x - meson and
neutrino correspondingly. Following 1.S. Shapiro,
Blokhintsev estimated g™ as

g*flne) =A%,

with Ay ~10"%cm. His conclusion consists in

affirmation that the strong interaction of electron
and neutrino takes place when the wave length &
of the neutrino wave packet less than Ay .

R<Ag. (5.29)

The inequality (5.29) can be considered as
estimation for revealing of the resonance electron
properties. Blohintzev supposes that fulfilling of
(5.29) leads to the significant changes in the
Compton effect and to other changes in electro-
magnetic interaction of electrons. It is possible also
to wait for the influence of the resonance electron
effects on investigation of hypothetical neutrino
oscillations.

(5.28)

6. Conclusion

The origin of the charge density and spin waves
is a long-standing problem relevant to a number of
important issues in condensed matter physics. The
collective excitations are discussed here in view of
guantum non-local hydrodynamics. Whereas the
latter remains valid in graphene and yields insight
into the understanding of spin — charge dependent
modes, the generalized system of equations is
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derived including possible particular cases. It is
known that the Schrédinger — Madelung quantum
physics leads to the destruction of the wave packets
and can not be used for the solution of this kind of
problems. The appearance of the soliton solutions
in mathematics is the rare and remarkable effect.
As we see the soliton’s appearance in the
generalized hydrodynamics created by Alexeev is
an “ordinary” oft-recurring fact. Investigation of
the inner charge distribution of electron in the
frame of the non-local quantum hydrodynamics
leads to following main results:

1. From calculations follow that electron can
be considered like charged ball (shortly CB model)
which charge is concentrated mainly in the shell of
this ball. In the first approximation this result does
not depend on the choice of the non-locality
parameter.

2. Electron radius can not be indicated
exactly in principle; its radius depends on physical
system where an electron is placed. It is possible to
speak about the different electron shells connected
with evolution of the charge density, quantum
pressure, electric potential and forces near the
boundary.

3. These results should be taken into account
in the theory of the single floating electron been
isolated in a Penning trap.

Important to underline that the problem of
existing and propagation of solitons belongs to the
class of significantly non-local non-linear problems
which can be solved only in the frame of vast
numerical modeling.
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K HEJ'IOKA.HIv:HOVI TEOPUU 3APAAOBbIX U CMIMHOBbIX
B3AMMOAENCTBUU B BOJTHAX U HACTULIAX

B.B. AnekceeB*

Mockoeckuii 20cydapcmeeHnvlll YyHUGepCument MOHKUX XUMUYECKUX TMEeXHOI02ULL
umenu M.B. Jlomonocoea Mockea, 119571 Poccus

*4emop ons nepenucku, e-mail: boris.vlad.alexeev@gmail.com

B pamkax HenokanbHoU keaHmMogol 2audpoOuHaMuKu mfocmpoeHa meopus e3aumodelicmeusi 8 80JIHax
3aps0oebix U CriuHO8bIX 8036yx0eHul. WccrnedosaHa 6HymMpeHHsi 3apsdoeasi cmpykmypa 3/eKmpoHa Ha
OCHOBE HeJrloKarbHo20 onucaHus. W3 pacuyemos cnedyem, umo 6HympeHHee pacripedeneHue 3apsda
anekmpoHa omeedaem modenu wapa, 3apsd Komopozao cocpedomoyeH 8 OCHOBHOM 8 OKPeCcmHOCcmu 0b0104KU
wapa. B pacdemax yyumsigaemcsi 803MOXHOE OMKIIOHEHUE CIIUHa OM HarnpaesieHusi Ma2HUmHoO20 MOMeHma.

Knroyeenblie crioga: 0CHO8bI MeopuU MPoUeccos repeHoca, Meopusi CoMuUMOHOS8, 0606WeHHbIe ZUOPOOUHBMULIGCKUG
ypaeHeHuUs, OCHo8aHUs K8aHMOoBoU MexaHUKU.
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