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The temperature dependence of EPR spectrum of 2,5-bis(trifluoromethyl)nitrobenzene radical anion in 

anhydrous DMF was investigated. Internal dynamics of hindered rotation of the CF3-group in ortho-

position to NO2-group causes HFS modulation. The spectrum changes are reversible and temperature-

dependent. An original temperature-activation representation of complex spectral density was 

proposed instead of the traditional spectral-kinetics representation to explain the observed 

transformation. The change resulted in a new convenient phenomenological reconstruction model, 

which allowed simulating the spectra in the whole temperature range. Splitting constants and 

contributions to the spectral widths of the spectral lines were found. The activation energy of the CF3-

group hindered rotation is significant and amounts to 37 kJ/mol. 
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Introduction 

 Temperature-reversible transformations of the EPR spectrum of a free radical (FR) are 

almost the only source of experimental information about its low-frequency (~10
6
–10

8
 s

-1
) 

internal motion. 

 Anion radicals (AR) are optimal objects for studying temperature-dependent hyperfine 

structure (HFS) due to the features of stereospecific hyperfine interactions (HFI) in π-radicals 

containing fluoroalkyl substituents, because the observed HFI constants are the greatest of 

possible in the charge triad [1, 2]. 

 Previously we have studied the spectra of anion radicals of ortho-nitrobenzotrifluoride 

2-CF3-C6H4-NO2
•
 (AR I) in N,N'-dimethylformamide (DMFA) and acetonitrile [3, 4] and of 2,5-

bis (trifluoromethyl)nitrobenzene 2,5-(CF3)2-C6H3-NO2
•
 (AR II) in acetonitrile [5]. Both ARs 

show a strong dynamic modulation (DM) of the HFS in the EPR spectrum caused by the 

constrained hindered torsion and deformation motions of the CF3 and NO2 groups with an 

extreme activation barrier (~ 34.7 kJ/mol) in aprotic solvents. The reversibly transformed 

spectral contour maintains very high characteristicity when scanning temperature. AR II differs 

from its analog AR I only in the second CF3 group freely rotating in the meta position and 

represented in the EPR spectrum by a binomial quartet with a small splitting constant. 
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 We found that the spectral and kinetic mode and the barriers of the internal hindered 

rotation of the CF3 rotor and rotational diffusion depend on the composition of the mixed solvent 

in the liquid mixture DMFA-water for AR I. Because the HFS maintains high characteristicity in 

the mixtures, the AR showed the properties of an effective spin probe allowing to find signs of 

stoichiometric structuring in the mixed solvate cage [6]. 

 The results of [3, 4, 6] allowed to correct a number of essential mistakes made previously 

by researchers when interpreting the EPR spectra of AR I [7, 8]. The mistakes were caused by 

the imperfection of the former equipment, the absence of the HFI theory, the small amount of the 

obtained primary information and the absence of a planned experiment with consecutive 

scanning of temperature. The type of the HFS is in conflict with the hypothesis of equivalence of 

19
F nuclei, and its parameters presented in [7, 8] without clarification of the mode of dynamic 

modulation are not proved, including even the constant of fluorine splitting. 

 In this work the reversible transformation of the EPR spectrum of AR II in DMFA was 

studied. Besides, a version of the theory of reversible transformations of HFS was suggested 

with the participation of previously obtained data. This allows creating a uniform 

phenomenological model for the reconstruction of the spectral contour in the whole 

experimentally attainable range of temperature-reversible dynamic transformation of the spectral 

contour modeled by the superposition of Lorentz resonant lines. 

 

Experimental  

 High purity DMFA was stored in a bottle with two ground glass joints over molecular 

sieves with 3 Å pores and distilled in vacuum shortly before measurements. 

 2,5-Bis(trifluoromethyl)nitrobenzene was purified before measurements by vacuum 

distillation. Its solution in anhydrous DMFA was subjected to several cycles of degasification in 

vacuum at 10
-3

 torr, and the vessel with the ready anaerobic solution was filled with a spectrally 

pure inert gas. 

 AR II was obtained by the reaction of one-electron transfer from potassium tert-butylate 

C4H9OK. 

 EPR spectra were recorded in the range 207 < T < 290 K with the use of a modernized 

digitized EPR-V X-range radio spectrometer with a temperature attachment. Each spectrum is a 

numerical array of 4096 points. Processing was carried out in a program complex [9] created by 

us. The selection of a reconstruction model and the determination of its optimum parameters was 

described previously in detail in [3–5]. For the reconstruction we used the phenomenological 

model of HFS in the form of superposition of nondegenerate Lorentz lines of separate resonant 

transitions constructed on the basis of the low-temperature limit form (LF). This model takes into 
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account the shifts and broadenings of the nondegenerate components of the fluorine Fermi-

contact multiplet (FCM) of the HFS in the course of temperature scanning. 

 Examples of the registered EPR spectra (on the left) and their reconstruction (on the 

right) are presented in Figure 1. The HFS model takes into account the dipolar broadening of the 

components of the nitrogen triplet and the exchange broadening of the components of the 

fluorine multiplet of the CF3 group in the ortho position. The calculated parameters of the HFS 

are presented in the table. 
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Figure 1. Examples of EPR spectra of AR 2,5-(CF3)2-C6H3-NO2

•
 (on the left)  

and their reconstructions (on the right) in anhydrous DMFA. 

 

Hyperfine splitting constants and dynamic contributions in the broadness of lines (mT)  

in the EPR spectrum of AR II at different temperatures 

T, K aF1 aF2 aF3 aN aHp aHо aHм aFм-CF3 Г0 
WN(+1) 

×10
3
 

WN(-1) 

×10
3
 

jF(mi) 

×10
3
 

290.0 1.4359 1.4359 0.1831 0.6267 0.4933 0.2723 0.1412 0.0674 0.0345 1.0 1.7 64.7 

282.3 1.4528 1.4528 0.1528 0.6294 0.4918 0.2740 0.1405 0.0692 0.0354 –0.1 1.1 44.2 

278.2 1.4670 1.4670 0.1212 0.6295 0.4932 0.2756 0.1402 0.0693 0.0301 0.5 1.9 22.3 

273.9 1.4713 1.4713 0.1158 0.6333 0.4948 0.2775 0.1394 0.0705 0.0293 0.1 1.9 15.8 

273.9* 1.4723 1.4723 0.1092 0.6345 0.4935 0.2781 0.1381 0.0728 0.0317 –1.6 –0.7 11.6 

267.5 1.4729 1.4729 0.1110 0.6341 0.4948 0.2780 0.1380 0.0728 0.0298 –1.1 1.3 11.8 

263.4 1.4747 1.4747 0.1083 0.6357 0.4936 0.2790 0.1372 0.0735 0.0301 –2.4 0.4 6.7 

259.4 1.4766 1.4766 0.1072 0.6364 0.4938 0.2793 0.1365 0.0734 0.0304 –2.2 0.9 3.9 

255.6 1.4781 1.4781 0.1065 0.6373 0.4936 0.2803 0.1367 0.0742 0.0309 –2.4 1.0 1.5 

251.9 1.4783 1.4783 0.1046 0.6381 0.4935 0.2809 0.1365 0.0763 0.0312 –2.5 1.6 0.8 

247.7 1.4778 1.4778 0.1030 0.6387 0.4923 0.2812 0.1364 0.0770 0.0326 –2.9 1.7 0.6 

237.7 1.4776 1.4776 0.1015 0.6393 0.4917 0.2816 0.1367 0.0779 0.0309 –2.5 3.1 –0.5 

233.5 1.4783 1.4783 0.1009 0.6395 0.4920 0.2821 0.1366 0.0786 0.0319 –2.5 3.8 –0.4 

230.2 1.4803 1.4803 0.1002 0.6405 0.4931 0.2829 0.1364 0.0791 0.0343 –3.6 3.5 –0.3 

226.5 1.4805 1.4805 0.0983 0.6419 0.4907 0.2831 0.1363 0.0798 0.0330 –2.3 6.2 –0.3 

220.7 1.4822 1.4822 0.0973 0.6435 0.4914 0.2836 0.1363 0.0806 0.0335 –1.9 7.9 0.5 

216.1 1.4836 1.4836 0.0958 0.6436 0.4915 0.2844 0.1380 0.0816 0.0368 –2.8 8.4 –0.3 

211.7 1.4844 1.4844 0.0967 0.6430 0.4917 0.2848 0.1356 0.0823 0.0438 –5.1 7.1 0.0 

207.2 1.4828 1.4828 0.0923 0.6442 0.4881 0.2850 0.1390 0.0839 0.0484 –1.8 13.8 0.8 

* After a steep rise from the low temperature range (test for reproducibility - reversibility). 

 

Results and Discussion 

 The model contours of HFS are in very good agreement with the experimental ones. The 

nature of minimal differences is due to the used equipment and is associated with the very small 

delay of registration of the numerical array forming the absorption contour with respect to the 

speed of its scanning. 
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 The qualitative picture of temperature-dependent transformations of the EPR spectra of 

AR II is similar to that found by us previously for AR I [3], because it is generated by the 

common structural fragment. The first mechanism, the basic one, is associated with the torsion 

movement of the CF3 rotor adjacent to the nitro group, and is shown in shifts and broadening of 

six of eight components of the phase-shift-code keyed signal [4]. The second mechanism of 

temperature changes of the HFS, as in the solutions of the ARs of all nitroarenes, is due to 

rotational diffusion and manifests itself as the asymmetric deformation of the lines of the nitric 

triplet 
14

N. For its description the simplest model of spherical rotational diffusion turned out to 

be quite sufficient. 

 As a rule, interpretation of HFS is associated with the circular frequency  and the time  

of correlation of the movement. These parameters play the role of a spectral-kinetic (SK) couple 

of arguments in the spectral display of the simplified kinetic model of the dynamics of the 

stationary random process. Temperature plays the key role in the organization of the physico-

chemical laboratory experiment. However, it is introduced via the activation Arrhenius equation 

as a part of correlation time , and it is a hidden variable. As a result, temperature correlations 

are used instead of analytical presentation of spectral measurements data. This is unacceptable 

and must be corrected. 

 The DM of a Fermi-contact HFS manifests itself as broadening and shifts of the resonant 

lines of the multiplet of the nuclei of a mobile group of chemically equivalent atoms (GCEA). It 

is one of the most conspicuous mechanisms of temperature changes in the EPR spectrum of a 

free radical in solution. On the boundaries of the ideal (in general not attainable) temperature 

range the multiplet of GCEA nuclei, as well as the spectrum in general, take one of LFs. An 

equilibrium (E) LF corresponds to the "static" orientation of the nuclei and an extremely long 

time of the movement correlation (>> 1). A dynamic LF (R) arises when superfast movement 

is attained at <<1. Changes of conditions perturb the LF, and a chain of the dynamic phases 

(DP) arises. A mental experiment allows to separate the main DPs generated by counter thermal 

agitations of both LFs. 

 The low-temperature side of the chain shows LF E and then the DP of slow (S) 

movement. The high-temperature side has LF R and the DF of fast (F) movement (in NMR 

"exchange"). So, the multiplet on the sides changes as (ES) or (FR), and these schemes are 

invariable up to the transitional (I) range ( ~ 1). In the center of the range the shifting lines are 

maximally broadened. The range in general is divided into ranges as ESIFR, and, if 

necessary, it can be described with any level of detail. For example, fragment 

…(S)III(F)… arises near the center of the chain of phases, and the detailed chain of 

DM phases (PDM) takes the following form: 
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 ES(S)III(F)FR, (1) 

if one isolates all characteristic transforms of the HFS in the form of PDM. In ranges ES and 

FR the simplified schemes of HFS reconstruction on the basis of the perturbed LF are 

effective, but in area I they are no longer adequate. Limit schemes are sufficient for most 

hydrocarbonic radicals, but for organofluorine systems it is desirable to supplement the theory. 

 Let us perform transition to the temperature-activation (TA) representation of the HFS 

parameters using a minimum of symmetrizing transformations of the real j() and imaginary 

k() components of complex spectral density (CSD), in which the dimensionless product of 

resonant circular frequency  and correlation time  is taken as uniform spectral-kinetic 

argument Y: 

 Y = .  (2) 

 j(Y) = (g0/)×Y/[1+Y
2
],  (3) 

 2j0 = g0/,  (4) 

 k(Y)=Y×j(Y).  (5) 

 Let us take into account the activation Arrhenius equation for correlation time: 

 =×exp(E×T
-1

). (6) 

Let us write: 

 Y = ()×exp(E×T
-1

). (7) 

 Let us introduce the dimensionless substitution: 

 =exp(-E×T0
-1

). (8) 

 Let us represent inverse temperature as a sum: 

 T
-1

 =  + 0 (9) 

isolating the reference point of temperature argument 0 = T0
-1

. Then equation (2) is transformed 

to equality (10) providing the substitution of arguments: 

 Y =  = exp(E×). (10) 

 Equations (3) and (5) take a compact form based on hyperbolic functions: 

 j(Y) = 2j0×Y
-1

Y× (Y
-1

+Y)
-1

= j0×ch(E×)
-1

, (11) 

 k(E×) = j0exp(E×)×ch(E×)
-1

= j0× [1+th(E×)]. (12) 

 It is expedient to represent the imaginary component of complex spectral density (12) 

containing two summands as a scalar product of a pair of two-component vectors: 

 

 E = {1, 1},  

 T = {1, th(E×)},  (13) 

 k(E×) = j0×(ET) = j0×({1, 1}{1, th(E×)}).  

 Subsequent simple replacement of unit vector E with scale-calibrating vector A gives the 

temperature function of splitting constants (34), which is theoretically derived on the basis of 

stationary kinetics of activation supply of thermal maintenance of equilibrium. 
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 The logarithm of the real component of spectral density (11) forms an illustration of 

temperature changes of spectral density. The asymptotes of its sides are two infinitely divergent 

half-lines (Figure 2) (for λ = 0), and the extreme absolute values of their slope coefficients are 

equal to activation energy: 

 lim d(ln ( )) / dj E E     . (14) 

 However, the EPR spectrum of AR II in DMFA even at 250 K shows pronounced full 

braking of the CF3 rotor adjacent to the NO2 group, which generates a plateau in the bottom of 

the curve of ln jF (T
-1

) (Figure 3) not observed previously in case of AR I. It is easy to imitate the 

effect by means of a small perturbation of λ. 

 Let us designate the perturbed function of real spectral density by j1(): 

 j1() = ch
 -1

(E×)+ λ (15) 

and compare the logarithms: 

 ln j0()=ln[ch
 -1

(E×)], (16) 

 ln j1() = ln[ch
-1

(E×) + λ]. (17) 

 This gives the asymptotic limit of perturbed spectral density in the low-temperature side: 

 1lim ln ( ) lnj    ln j1() = ln . (18) 

 Subtracting (18) from (17) to compensate the perturbation we obtain expressions ln j2() 

and j2() equivalent to ln j1() and j1(), but displaced along the ordinate axis: 

ln j2() = ln[ch
-1

(E×)+ λ] - ln λ; (19) 

j2() = λ
-1

ch 
-1

(E×)+1. (20) 

 Model curves ln j and ln j1 for different values ×10
4 

= 0, 1, 2,… 8 are shown in Figure 2. 

They are undistinguishable in the range FIS, 

but differences arise in the range SE, and curve 

lnJ1() takes the shape of a "hockey stick" with a 

base sensitive to parameter  (Figure 2). This 

allows isolating a point of transition to the "static" 

range E, the nature of which can be various. 

Functions (15) and (20) are more realistic than 

customary (11). However, being an evident 

illustration of classification of spectral-kinetic 

ranges (1) of the temperature interval they are 

limited to the experimental conditions. When 

 > 0 (low temperatures), the range limit is the 

solution freezing point. When at  < 0 (high 

temperatures), a kinetic limit arises, if the studied 

ln j1 

I
F                 S

(R) E ·104

....

2

1


0

-0.001              0               0.001 

Figure 2. Modelling the real component of 

complex spectral density j (broadening) upon 

perturbation by small parameter  and the range 

of dynamic modulation. 
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radical particle loses stability. The more distant inevitable thermodynamic limit coincides with 

the solution boiling point. 

 The studied series of the EPR spectra of AR II show transition from LF E to DP S, but, as 

temperature increases, it is not possible to attain the bifurcation point (~1) in the center of the 

transitional (I) spectral-kinetic range (Figure 3). The predicted course of further transformations 

of the spectral density components is shown by a dashed line. 

 

Figure 3. Temperature dependences of the hyperfine splitting constants and broadenings  

of the central components of the CF3 group multiplet at the ortho position. 

[мТл means mT] 

  

 Let us present a theoretical derivation of formula (13) based on activation considerations 

of kinetics. Temperature-reversible spectral transformation ER corresponds to the thermal 

process maintaining thermodynamic equilibrium. 

 Let us present it by the superposition of the counter processes of activation (a) and 

deactivation (d), i.e., (E)a и (R)d. Such thermal scheme is easily modeled by means of 

stationary two-directional kinetics. Symbols (E, R) designate the molar quantities of the 

interconverted LFs ER. Let us form the balance of rates taking into account the rate constants 

of activation and deactivation ( k , k ). 

 Let us introduce a time variable t and present the rates of the mutually inverse processes, 

– activation and deactivation – by a system of two kinetic equations: 
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,

.

dE
kE kR

dt

dR
kR kE

dt


  


   


 (21) 

 Their linear combinations give the following simple and impressive results: 

 

( )
( )( ),

( )
( )( )

d E R
k k E R

dt

d E R
k k E R

dt


   


    



 (22) 

 The molar quantities are interrelated by the material balance, i.e.: 

 (E + R) = const.  (23) 

This gives the first condition of stationarity for a dynamic system 

 ( ) 0E R  .  (24) 

 The observed contour of HFS remains invariable in the course of the 

measurement. Therefore, there is a second condition of stationarity, for the difference of rates, 

i.e., 

 0)(  RE  . (25) 

 The solution of system (22) reduces itself to algebraic separation of concentration and 

activation variables: 

 
( )( ) ( )( ) 0,

( )( ) ( )( ) 0.

k k E R k k E R

k k E R k k E R

      

      

 (26) 

 It follows from equations (26) that the current mole fractions of two LFs are associated 

with the rate constants: 

 
( ) ( )

( ) ( )
E R

E R k k
x x

E R k k

 
  

 
. (27) 

 Subsequent transformations just refine the obtained result. 

 The rate constant is the inverse value of correlation time: 

 

1 1

1 1

exp( ) ( ) ,

exp( ) ( ) .

T k

T k

 


 


    

    

 (28) 

 Let us replace T
-1

 using (9), and let us assume that the preexponential multipliers and the 

modules of activation energy of in activation equations (28) are equal, but differing in sign. 

Owing to this the dimensionless ratio of the difference and sum of the rate constants in (27) is 

transformed by substitution of (10) into an antisymmetrized function in the form of hyperbolic 

tangent: 

 
( ) exp( ) exp( )

th( ).
exp( ) exp( )( )

k k

k k

   
  

  
 (29) 

 The molar fractions of the LF are associated with the rate constants of the direct and 

reverse stages. Therefore, they are also expressed in terms of hyperbolic tangent: 



x 

 
1,

th( ).

E R

E R

x x

x x

 


  
 (30) 

 We obtain further: 

 

 

 

1
1 th( ) ,

2

1
1 th( ) .

2

E

R

x

x


  


  


  (31) 

 The sign before the fraction in (31) depends on which of the equilibrium constants of 

splitting changes to the uniform equilibrium value (see Figure 3). 

 The current value of the isothermal constant of splitting a(T) is formed as the average 

value. Let us express it using two-component vectors {xE, xR} and {aE, aR}, the components of 

which are the molecular ratios and splitting constants of LFs E and R. Let us form their scalar 

product: 

 ( ) ({ , } { , })E R E R E E R Ra x x a a x a x a       , (32) 

which is the required temperature dependence of splitting constants. Each of them changes from 

its equilibrium value aE to the common limit aR. Finally we obtain: 

  
1

( ) ( ) ( ) th( )
2

E R E Ra a a a a      . (33) 

 It is easily seen that formula (33) is the scalar product of two-component vectors 

analogous to (13): 

 ( ) ( )a   A•T ,  

 
1 1

{ ( ), ( )}
2 2

E R E Ra a a a  A , (34) 

 T={1, th(ε)}.  

 Vector A consists of the half-sum and half-difference of the theoretical limit values of the 

splitting constant in the ideal temperature range of its change in the equilibrium thermal process 

ER. Vector T consists of the summands of the imaginary component of complex spectral 

density. 

 Thus, the independent activation analysis of transformation ER confirms the key 

substitution (8), although it seems unusual, even extravagant. 

 

Conclusion 

 For the first time we obtained in an obvious analytical form the temperature functions of 

both components of complex spectral density and of the observed constants of isotropic 

hyperfine splitting in a dynamically modulated multiplet. 

 In general, as compared to the theory of micromechanical models of relaxation, the 

hyperbolic "trigonometry" of the temperature-activation representation allows a simple 
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consideration of the real factors and distortions via semi-empirical modifications [(15) and (20)] 

of idealized functions (11). 

 It is shown that these functions are in good agreement with the experimental data, which 

allows calculating the coordinated activation parameters using the broadening and the splitting 

constants. 

 The found activation barrier of the hindered internal motion of AR II attains the extreme 

value of 37 kJ/mol, which is higher than that of AR I [3]. One of probable causes can be the 

partial synchronization of the torsion movements of both CF3 rotors in AR II resulting in an 

increase of their common moment of inertia and an increase of activation energy. This causes 

full braking of the CF3 rotor in the orto position at low temperatures, and equilibrium LF E is 

attained even at 250 K, i.e., 50 K higher than in case of AR I [3]. The activation energies of 

Brownian rotational diffusion of AR I and II do not differ and are equal to 14.6 and 14.8 kJ/mol, 

respectively. 
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