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In this paper we consider the levitation phenomenon using the generalized Bolzmann kinetics
theory which can represent the non-local physics of levitation. This approach can identify the
conditions when the levitation can take place under the influence of correlated electromagnetic
and gravitational fields. The sufficient mathematical conditions of levitation are obtained.
It means that the regime of levitation could be realized from the position of the non-local
hydrodynamics.
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B cmamwe pacemampuearomest agpgpekmul ieeumayuil ¢ no3uyuu 0606uieHHot 6016y MaHO8-
cKoll pusuueckoll KUHemMuKuU, s18asouelicss cCocmasHoll uacmeto HesoKkalbHol gusuku. Te-
opusl no3gosisiem ufeHMUPUUUPOBAMb YCA08USL, NPU KOMOPLIX 803MOXHO cyujecmeosaHue
Jlesumayuu 8 pesysiemame 0eilicmeust KOpPeaupo8aHHbLX IeKMPOMAZHUMHO20 U 2pA8UMA-
YuoHHo20 noseil. Cpopmyauposarsl 00CmMamouHsle YCao8Usl Aesumayui. YemaHoeeHa 803-
MOIKHOCMb ONUCAHUSL Ie8UMAYUUU 8 PAMKAX HESIOKANIbHOU 2UOPOOUHAMUKU.

Knroueeble cnoea: 0CHOBAHUSL MeopuUU NPoyecco8 nepeHoca, 0606uerHHble 2u0poouHaMUUe-

CKue ypasHeHusl, oCHOo8bl HeJl0KA/IbHOU qausu;cu, Jlesumayust.

1. Introduction

The phenomenon of levitation has attracted
attention from philosophers and scientists in the
past and now. How can levitation be possible? What
power or agent accomplishes it? The most obvious
explanation-the possession of a word of mystical
power-is not interesting here for us. In spite of
the tremendous recent advances, notably in power
electronics, magnetic materials, on the application of
electromagnetic suspension and levitation techniques to
advanced ground transportation, physics of levitations
needs in following significant investigations.

In this paper we revisit the levitation phenomenon
using the generalized Bolzmann kinetics theory [1—
5] which can represent the non-local physics of this
levitation phenomenon.

The investigations of the levitation stability
have a long history and are considered in details in
[6-10]. As usual the problem review begins with
the citation of the Earnshaw paper [6]. Earnshaw’s
theorem depends on a mathematical property of the
I/r type energy potential valid for magnetostatic and
electrostatic events and gravitation. At any point where
there is force balance is equal to zero, the equilibrium is
unstable because there can be no local minimum in the
potential energy. There must be some loopholes though,
because magnets above superconductors and the magnet
configuration do stably levitate including frogs [7] and
toys like levitron (spinning magnet tops), flying globe
and so on [11, 12]. It means that diamagnetic material
can stabilize the levitation of permanent magnets. It
is well known that the potential energy density of the
magnetic field can be written as:
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w, =—M-B (1.1
where B is magnetic induction, M is magnetization.
Using the phenomenological relation

where y is magnetic susceptibility, we have for the unit

volume of a magnetic material

w, =% B (1.3)
Hidy

The force acting on the unit volume of a levitating
object is

F=4 gradB’
HoH ,

(1.4)

if the phenomenological parameters are constant.
Diamagnets (for which y < 0) are repelled by magnetic
fields and attracted to field minima. As a result,
diamagnets can satisfy the stability conditions [6 —
9] and the following conditions are exceptions to
Earnshaw’s theorem:

a) Diamagnetism which occurs in materials which
have a relative permeability less than one. The result
is that is eddy currents are induced in a diamagnetic
material, it will repel magnetic flux.

b) The Meissner Effect which occurs in
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superconductors. Superconductors have zero internal
resistance. As such induced currents tend to persist, and
as a result the magnetic field they cause will persist as well.

¢) As result of oscillations, when an alternating
current is passed through an electromagnet, it behaves
like a diamagnetic material.

d) Rotation: employed by the Levitron, it uses
gyroscopic motion to overcome levitation instability.

e) Feedback can be used in conjunction with
electromagnets to dynamically adjust magnetic flux in
order to maintain levitation.

The main shortcoming of the Earnshaw theory
consists in application of principles of local physics to
the non-equilibrium non-local statistical systems.

The aim of this paper consists in application of
the non-local physics methods to the effect of levitation.
We intend to answer two questions:

1) Is it possible to formulate the sufficient
conditions of levitation from the position of the unified
non-local theory of transport processes (UNTT) [see,
for example, 1-4].

2) Is it possible to speak about the mutual influence
of electromagnetic field and gravitation in the frame of
UNTT?

2. Basic equations
Non-local hydrodynamic equations have the form

[1-4]:
(continuity equation for a mixture)

2.1)
ap, ﬁ
F“)—— voxB FO| p, -0 La v
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where Vv, is the hydrodynamic velocity in the coordinate
system at rest, p_is the density of a-species, p is the
pressure, I — unit tensore, FS) is the force of the non-
nonmagnetic origin acting on the unit of volume, ¢_is
the internal energy of a particle of the a-species, 7 is
non-local parameter.

Important remarks:

1. Equations (2.1) — (2.3) should be considered
as local approximation of non-local equations (NLE)
written in the hydrodynamic form. NLE include
quantum hydrodynamics of Schrodinger — Madelung
as a deep particular case [4] and can be applied in the
frame of the unified theory from the atom scale to the
Universe evolution.
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and from the energy equation we find
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From Eq. (2.4) we have
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where L is constant vector. Let us introduce vector L ()
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2. The basic system contains the cross terms for the
forces of the mass and electro- magneto-dynamic origin.
It means that the fluctuation of the gravitational field
leads to the electro- magneto dynamical fluctuations
and verse versa.

3. The upper index on the non-local parameter
T ,E,O)underlines that non-local parameter is calculated in
the local approximation of the non-local theory.

Sufficient conditions of levitation can be obtained
from Eqgs. (2.1) — (2.3) after equalizing all terms
containing forces to zero. Namely, from the continuity
equation

- 1 3
1 1 24(1 1
p:Ff ) “ VoV +p;F(; ) I+=p vOFf ) +—F(: )p +

{z T(°)|:paF;1) + e v, XB} 0, (2.4)
from the motion equation follows:
Zq—“{rgo){paFg) + q—“pavo X B}} x
a m(l ma
(2.5)
2
(2.6)
pai - paFo(tl) “Yally [VO x B]} =
(2.7)
(2.8)
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L, ()= r;‘{ p,FO 4 e f y B} (2.9)
ma
and rewrite now Eq. (2.5), which contains the density fluctuation [1]
op, O
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Using also (2.9), we find
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The vector product in Eq. (2.13) can be transformed as
L,(t)xB=1"p,F" xB~7g,n,|v,5" ~B(v,B)] (2.14)

where ¢ n_ is the charge of a-species in the unit volume.
Taking into account the relations (2.10), (2.11), (2.12), we can realize the analogical transformation of the
energy condition (2.6):
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Equations (2.7), (2.13) and (2.15) define the system

of the sufficient conditions for levitation.
The choice of the non-local parameter needs
in the special consideration [3, 4]. The system of

where u is the particle velocity, H is the coefficient of
proportionality which reflects the state of the physical
system. In the simplest case H is equal to the Plank
constant % and the corresponding relation (2.16)

equations (2.1) — (2.3) convert in the system of quantum
hydrodynamic equations by the suitable choice of the
non-local parameter 7. The relation between r and
kinetic energy [3, 4] is used in quantum hydrodynamics

-H
¢ Amz’

(2.16)

correlates with the Heisenberg inequality. From the
first glance the approximation (2.16) is distinguished
radically from the kinetic relation known from the
theory of the rarefied gases

r=T1YP

2 (2.17)
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which is used for the calculation of the non-local parameter
in the macroscopic hydrodynamic case (v is the kinematic
viscosity). But it is not a case. In quantum approximation
the value v™ =#h/m has the dimension [c¢m’/s ] and
can be called as quantum viscosity, for the electron species
v" =him,=1.1577 c¢m*/s - If we take into account
that the value p/p ~ J'*, then the interrelation of (2.16)
and (2.17) becomes obvious.

3. Some particular cases
of the levitation conditions

Write down the system of the sufficient levitation
conditions for the quasi-stationary case neglecting
dissipation and the space derivatives in Eq. (2.13). We
find

ZF(I) _ anL
ZF(])

Introducing the current density

3.1)

BXZT“” Lo {paF;” +de pavoxB} (3.2)
m

a (l

i, =tVqnv, - (3.3)
one obtains

ZFO(,I)PZ _ BXZT,(,O)%%FS) "'sz,i_a[j“ xB] (3.4)

a a a a

The right-hand-side of Eq. (3.4) contains the cross
terms for the forces of the mass and electro- magneto-
dynamic origin. The last term in Eq. (3.4) can be written

Taking into account (2.16), (2.17) it is naturally to
suppose that

k,Tt'” > 1, (3.6)

introduce now

0 = Ai, (3.7)
k,T

where A is a parameter which leads to appearance the
effective temperature 7, . Other approximations can be
used, for example :

Lo " (3.8)
kyT, o

Let us consider now other particular case when
V,= 0. Inequations (2.7), (2.13) and (2.15) we conserve
the terms up to the 7” order. From Eq. (2.13) follows

;Fi”p,‘j = gL(t)— ;Z—ZLa(f)X B (3.9)
where now

L, (t)=7p,F", (3.10)
L(t)=>7"p,F. (3.11)

Then
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Introduce the explicit expression for the mass force

also in the form F =g+ 31—“E (3.13)
) a
Bx)" 9o i, xB]= Zparflo)[q—“} {VOB2 -B(v, B)} . (3.5) inEq.(3.9)
a ma a mn
Z (1) a_ ZT(O)pZ[g+ q, EJ zqa a (0)( %EJXB (3.14)
where nf = p2/m,. From Eq. (3.14) follows
2
LRpi=7 Zf“’)pig+ {EZT@'ZZ%} gxBY gz, ExBZ[;—“J Pt (3.15)
Let us introduce in Eq. (3.15) the Umov — Pointing vector S and Alexeev vector S, in the forms
S=ExB, (3.16)
S,=¢gxB. (3.17)
In this case
XFR'pi=5 [Zr“” ‘ j {EZ%‘”nSqa} Si2darcts SZ[(I—“] Pty (3.18)
a ma
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For the approximation (3.7) one obtains

2
h1ofp' | .22 0" Iv(4
FOpl = g—| L Lo |+ S| B2 | =S | ptl 3.19
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where the average charge density is introduced
0 = anng . (3.20)

The analogical transformations of the energy condition (2.15) can be realized for this particular case when
v, =0 . Namely
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where FU Z F(” Z(g + q—"Ej Eq. (3.22) should be considered as a relation defining the energy consumption
m

needed for the levitation.
From (3.13) follows a relation

S Ep; = go" +EY L2 pi = g’ +EY g1 = g0’ +EQ" 623

which can be used for the transformation of Eq. (3.22). For a tentative estimate we can omit the derivatives of the
logarithmic terms and the time derivatives for a quasi-neutral media. As a result from (3.22)
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where

—

_ a = _ a
—Z&'al’la, g T €Ny
a

(1]

(3.27)

Let us obtain a tentative estimate from (3.19) for the quasi-stationary case in a quasi-neutral media. From

(3.18) for the case under consideration we have

2
YK ps=-8,Y g —SZ[Z—“j Pt

(3.28)

Only in the case when the non-local parameter does not depend on the kind of species the first term of the right-
hand-side of Eq. (3.28) is equal to zero taking into account (3.25).

From (3.8), (3.23), (3.25), (3.28) we find

2
p'g=-8,2 a7 —SZ[q—“j paty
a a ma

or

2
ho 1 q
a Z_A_S_ da a
Pe i, Ta(ma] Pe

(3.29)

(3.30)

in the case of (3.7) approximation. Relation leads in SI to the estimate

p”g;—A;-Z.ISS-lOwnS

or

p'g = 2.138~10‘19?[B><E]n: :

(3.31)

(3.32)

The following table lists known examples of number densities at 1 atm and 20 °C, unless otherwise noted.

Molecular number density and related
parameters of some materials

Material | Number density (n) Density (p)
) (10 m3) or (10°kg/m®) or
Units (10> cm) (g/em?)
dry air 0.02504 1.2041x1073
water 33.3679 0.99820
diamond 176.2 3.513
Let us wuse now (1.4) and the obvious

phenomenological condition of the force balance (see
also [9]) we have

F= 4 gradB® = pge. (3.33)

HoH
where p is the mass density of the material to be levitated
and &, is the unit vector in the vertical direction, magnetic
susceptibility y is negative for diamagnetic materials. In
the frame of the phenomenological description of the
magnetic and gravitational field we have

X
W=Wm+Wg=— Bz-i-pgz (3.34)
Hiy
A necessary condition for stability is
(3.35)

jF-ds<O,
N

where S is any small closed surface surrounding the

equilibrium point. It leads to the condition
div F<0. (3.36)

This relation leads to the stability condition

Aw = divgrad w = divgrad w, = ——%—AB* =—divF >0, (3.37)
Hiy
if y < 0 (diamagnetic materials) and AB? > 0.
The corresponding stability investigation from the
phenomenological point of view was realized in [6].
From the relation (3.33) follows (u« ~ 1)
OB

B (3.38)
0

and from (3.29)
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(3.39)

a

2
pg = —ST(")Z(Z—“J Pl

if the non-local parameter does not depend on the sort
of species a. After equalizing the right-hand-sides of
relations (3.38) and (3.39) one obtains

0

0B
moE gt = (3.40)

e

because

2 2 2 2
Z(q"jpa—(q’jﬂ J{qejpﬂ 4 2 n";(qup;' (3.41)
—\m, m, m, m, me m,

Let us introduce the character length |

2
1 =g, L, (3.42)
2m

e

hence from (3.40), (3.42)

1 8B
82

I, En’ = xl (3.43)

Introduce the electromotive force (EMF) for a particle

E,, =1E. (3.44)
and for n; particles
E,., =1 En’- (3.45)
Hence from (3.43), (3.45) we find
_ |Z | B (3.46)
ind,n
0 6z

Formally Eq. (3.46) can be written in the form
of Faraday’s law of induction, the most widespread
version of this law states that the induced electromotive
force in any closed circuit is equal to the rate of change
of the magnetic flux through the circuit:

oo,
ind 51 ’

(3.47)

where @, is the magnetic flux. This version of Faraday’s
law strictly holds only when the closed circuit is a loop
of infinitely thin wire and is invalid in some other
circumstances. Nevertheless formally

1 0B at

Eoin= |z| e (3.48)
or

1 6B 1
Eign = Izl o (3.49)

After introduction of the character the counter
square

A (3.50)

we reach the relation in the form of Faraday’s law

0D,
ind — a t

(3.51)

Let us consider now the force balance (3.18) for
the quasi-stationary case by the absence of the external
electric field. We have

p'g=-S, an i SZ(;—“] pary

where (see (3.16), (3.17)) S=E x B, S, = g x B. The
effect of polarization leads to diminishing of the external
intensity of electric field. We suppose that the external
intensity of electric field is equal to zero. It means that
relation (3.52) should be written in the form

2
p'g=Bxg) q,n ‘°)+BxE'Z[ J Pz,
o ma

(3.52)

(3.53)

a

where the electric intensity E' reflects the polarization
effect. We find

p'g= Bngqan“ (°)+BxE’Z( jqa oty
ma

a

or

pg= BX{Z% : <°{g+E'q—“}}-

m

a

(3.54)

(3.55)

Let us consider the two component mixture of negative and positive charged particles:

i

e L.
me

p'e=Bxglgnn" +qnc!)+ Bx E{qEnff}°>L+ 4
m

(3.56)
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It is naturally to suppose that for the quasi-neutral matter

qinz‘a = qe

In this case we have from (3.56)

(o +mn g = Bglg " +qen:r£°>)+BXE'(ansri‘”ij |
me

But n) ~n! | then

1

1 2
mn'g=Bxggn't" +Bx E’[qeznjrio) m_j , mg—=Bxgg, +Bx E"(i—"

0)
Te

n; Te(o) >> Ti(o) > m,<<m, -

(3.57)

(3.58)

e

Let us consider the limit cases of relation (3.58):

1. 7, = 0; levitation of the arbitrary mass can be
realized in the frame of the local description, only if g=0.

2.7,— o . We have

Bxg|qe|=—B><E'31—62, (3.59)

e

which leads to the obvious relation valid in the
considering limit case

2
, q
=-F e
g . (3.60)
or
m,g=—q,E - (3.61)

As we see gravitation leads to the polarization of matter:
Relation (3.61) can be considered as a direct
estimation of the electric intensity E' for this case

m
E'=-—g.
de
The value 12¢l = 4,ai, 18 known as an electron-
m

e

charge mass ratio. Then

E = —Lg . (3.62)
qratio
The simple estimation is valid
F=-8 _gs57.10" L, (3.63)

q ratio m

Taking into account the last result we have a new
view of the oil drop experiment performed by Robert
A. Millikan and Harvey Fletcher in 1909 to measure
the charge of the electron. The experiment entailed
balancing the downward gravitational force F, with the

upward drag acting on the spherical droplet (p, p, are
the densities of oil and air correspondingly)

£ =37 (o-p)e 669
and electric forces on tiny charged droplets of oil
suspended between two metal electrodes;
F.=QE. (3.65)

The density of the oil was known. Therefore the
droplets’ masses, their gravitational and buoyant forces
could be determined from observed radii. Using a known
electric field, Millikan and Fletcher could determine
the charge on oil droplets in mechanical equilibrium.
By repeating the experiment for many droplets, they
confirmed that the charges were all multiples of some
fundamental value q, . They proposed that this was the
charge of a single electron.

Obviously Eq. (3.65) corresponds to Eq. (3.61).
Then from position of non-local physics Mellikan
experiment reflects the polarized matter levitation
realized for the deep particular case when non-local
parameter 7, — o .

4. Conclusion

The following conclusions
significance can be done:

1. The levitation effects are the direct consequence
of the non-local equations (2.1) — (2.3).

2. The sufficient conditions of levitation are the
particular case of Egs. (2.1) — (2.3).

3. The strict theory of levitation can be constructed
only in the frame of non-local physics.

4. Fluctuations of the gravitational field lead to
the electro-magneto dynamical fluctuations and verse
versa. This fact can effect on the work of electronic
devices during the evolution of the wave atmospheric
fronts.

5. Levitation effects are connected not only with
the electro-magnetic energy flux S, but also with the
cross flux S, .

of the principal
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To the non-local theory of levitation

6. Usual local conditions of levitation are the deep
particular cases of the non-local theory.

7. Mellikan experiment corresponds to the deep
particular case when non-local parameter 7, — oo.
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