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The dynamics of active atoms that determine structure phase transitions in a solid body is 

considered in the context of the previously presented atom interaction model based on a 

special type of three-minimum potential. Periodical and soliton-like solutions of nonlinear 

differential equation of motion were obtained. The value of the bond energy of active atoms 

with respect to the potential barrier height in a single-particle potential with a triple minimum 

determines the character of a phase transition. Crystals of the MeIMeIIBX4 kind, as well as 

crystals and metals, on the surface of which atoms of gases and metals are absorbed, are 

considered as objects, in which the obtained results can be used. 
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Introduction 

Solid-state physics studies a variety of compounds (ferroelectrics, superconductors, magnetic 

materials, etc.), the most interesting properties of which are due to structural transformations 

occurring in them. Structural phase transitions arise when the crystallographic structure of a 

substance changes. Such transitions usually break the symmetry of the crystals only by the 

rearrangement of some atoms, whereas the positions of all the other atoms remain invariable [1, 2]. 

It is commonly assumed that phase transitions can be divided into two main classes: disorder-order 

type and displacive type [3]. In the first case the phase transition consists in statistical ordering of 

active atoms with respect to several equilibrium positions determined in each elementary cell by 

other atoms. In the second case the phase transition is caused by dynamic instability of the lattice 

with respect to collective displacement of active atoms with respect to symmetric positions in the 

cell.  

In most cases (see, for example, [4, 5]) the model of structural transition is described in the 

simplest case by a Hamiltonian in the form of the sum of one-partial energies determined by a 

double-minimum potential and by the harmonic bond between active atoms in different cells. The 

bond magnitude Величина связи (энергии связи?) in relation to the height of the potential barrier 

in the one-partial potential determines the nature of the phase transition. In case of a disorder-order 

transition collective oscillations of atoms do not play an essential role. In case of a displacive 

transition dynamic correlation of atomic displacements in different cells turns out to be 

determinative. The opportunity of occupying two equivalent positions of equilibrium by active 

atoms is not a solitary one. As experience shows, there are substances in which a sequence of 

several phase transitions is observed, so, the double-well potential model is inapplicable. The 

picture of the phase transition becomes much more difficult, and it is necessary to involve the multi-

mailto:swetik1969@yandex.ru


ii 

well one-particle potential for its description. The theory of these transitions has been developed 

much less than the theory for the case of the double-well potential. This work considers the 

dynamics of systems in which the ordering of active atoms can occur by three equivalent positions. 

Results and Discussion 

When describing phase transitions, it is usually possible to distinguish a group of atoms, the 

nature of the motion of which significantly depends on temperature. So, they can be considered 

responsible also for the emergence of the phase transition. At the same time, as a first 

approximation, the effect of other atoms can be replaced with an average static field. Let us 

consider a simple quasi-one-dimensional model, in which only the motion of active atoms is taken 

into account: 

Н = ∑ {
1

2
𝑚(

𝑑𝑢𝑛

𝑑𝑡
)2 + 𝑉(𝑢𝑛) +

1

2
𝑘0(𝑢𝑛+1 − 𝑢𝑛)2)}𝑁

𝑛=1 .                                                       (1) 

Here 𝑢𝑛 is the displacement of an active atom of mass m from the equilibrium position; 𝑉(𝑢𝑛 ) is 

the one-partial potential created by other atoms; parameter 𝑘0 takes into account the dipole-dipole 

interaction of displacements 𝑢𝑛 of the active atoms. Potential 𝑉(𝑢𝑛) has two minima or more, 

which makes it possible to order the active atoms by these states in the cell. 

 The following system of motion equations corresponds to Hamiltonian (1): 

𝑚
𝑑2𝑢𝑛

𝑑𝑡2 + 𝑘0(2𝑢𝑛 − 𝑢𝑛+1 − 𝑢𝑛−1) +
𝑑𝑉

𝑑𝑢𝑛
= 0.                                                                        (2) 

 By means of Hamiltonian (1) and motion equations (2) structural phase transitions were 

described in works [4–6]. It was assumed that potential V(u) has two minima. This work considers 

the dynamics of a lattice with potential function [7, 8] 

𝑉(𝑢) =  𝜀𝑢2(1 − 𝑢2)2                                                                                                              (3) 

having three minima at u = 0, ±1 and separated by potential barriers of height 4ɛ/27 at u = ±1/√3. 

Let us assume further that the energy parameter ɛ =1. 

The properties of the system described by Hamiltonian (1) at value (3) depend significantly 

on the relative role of the potential barrier ∆V=4/27 and energy ~𝑘0𝑎2 (a is the constant of the 

lattice of the active atoms) of the bond between the displacements in adjacent nodes of the lattice. 

1. If the energy between the displacements in adjacent nodes of the lattice 2𝑘0𝑎2 is very small in 

comparison with the potential barrier ∆V, the oscillations of the active atoms in different 

nodes are almost independent. In this case motion equations (2) reduce to the following 

system of independent equations: 

𝑚
𝑑2𝑢𝑛

𝑑𝑡2 +
𝑑𝑉

𝑑𝑢𝑛
= 0.                                                                                                                (4) 

 Integrating equation (4) and omitting the node index we obtain 

1

2
𝑚(

𝑑𝑢

𝑑𝑡
)2+V (u) =E,                                                                                                            (5) 

where E is the total energy of the oscillator. 
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 Taking into account (3) we can write solution (5) in the following form: 

𝑑𝑢

𝑑𝑡
= ±√2[𝐸 − 𝑢2(1 − 𝑢2)2] .                                                                                           (6) 

 Expression (6) sets phase trajectories on the plane (u, du/dt). All the phase trajectories are 

closed, which corresponds to oscillation motion. The separatrixes have the shape of loops beginning 

and ending in the same saddle points. The separatrix curves separate the trajectories corresponding 

to the oscillation of different character: low-amplitude oscillations with respect to minima u = 0, ±1 

are separated by the separatrix from oscillations with large amplitude with respect to zero of the 

coordinate system. 

 Integrating equation (6) we obtain 

∫
𝑑𝑢

√2[𝐸−𝑢2(1−𝑢2)2]
=

1

√2
∫

𝑑𝑢

√𝑃6(𝑢,𝐸)

𝑢

𝑢0

𝑢

𝑢0
= ±𝑡 ,                                                                              (7) 

where 𝑃6(𝑢, 𝐸) = 𝐸 − 𝑢2(1 − 𝑢2)2. Integration limits 𝑢0,  u are chosen from condition 𝑃6(𝑢, 𝐸) >

0. 

 Replacing variables 𝑢2 = 𝑦  makes it possible to depress the radicand degree in the left part 

of (7). Let us use this replacement to transform (7) to the following form: 

∫
𝑑𝑦

√𝑃4(𝑦,𝐸)
= ±2√2𝑡

𝑦

𝑦0
,                                                                                                                (8) 

where 𝑃4(𝑦, 𝐸) = 𝐸𝑦 − 𝑦4 + 2𝑦3 − 𝑦2. 

 Periodic solutions (8) exist at positive energies (E≥0). If 0≤E≤4/27, equation 𝑃4(𝑦, 𝐸) = 0 

has four real roots 𝑐1 > 𝑐2 > 𝑐3 > 𝑐4 = 0.   Constants ci (i = 1, 2, 3) fulfill the following conditions: 

с1 + с2 + с3 = 2, 𝑐1𝑐2 + 𝑐1𝑐3 + 𝑐2𝑐3 = 1, 𝑐1𝑐2𝑐3 = 𝐸. Polynom 𝑃4(𝑦, 𝐸) is positive at 𝑐4 ≤ 𝑦 <

𝑐3, and the integral in the left part of (8) is expressed in Jacobian elliptic functions [9]: 

∫
𝑑𝑦

√𝑦(𝑐2−𝑦)(𝑐3−𝑦)(𝑐1−𝑦)
=

2

√𝑐2(𝑐1−𝑐3)
𝐹(𝛽, 𝑟),

𝑦

0
                                                                                  (9) 

where 𝛽 = 𝑎𝑟𝑐𝑠𝑖𝑛√
(𝑐1−𝑐3)𝑦

(𝑐1−𝑦)𝑐3
,  r=√

(𝑐1−𝑐2)𝑐3

(𝑐1−𝑐3)𝑐2
 .                                                                                        

(10) 

 Taking into account the left part of expression (8) we obtain 

𝐹(𝛽, 𝑟) = ±𝑧,                                                                                                                                  (11) 

where z=√2𝑐2(𝑐1 − 𝑐3)t . 

 Expression (11) is an implicit solution of equation (8) using an elliptic integral of the first 

type. The explicit solution is written with the use of Jacobi sine function: sn (z,r)=sin 𝛽, so that 

y(t)=
𝑐1𝑐3𝑠𝑛2(𝑧,𝑟)

𝑐1−𝑐3𝑐𝑛2(𝑧,𝑟)
 .                                                                                                                           (12) 

 Returning to the initial variable (y>0) we obtain 



iv 

𝑢(𝑡) = ±
√𝑐1𝑐3𝑠𝑛(𝑧,𝑟)

√𝑐1−𝑐3𝑐𝑛2(𝑧,𝑟)
  .                                                                                                                (13) 

 Function 𝑢(𝑡) (13) is uneven. The period of oscillation and the oscillation frequency are 

determined by expressions 

T=
4𝐾(𝑟)

√𝑐2(𝑐1−𝑐3)
,        𝜔 =

𝜋√𝑐2(𝑐1−𝑐3)

𝐾(𝑟)
 ,                                                                                               (14) 

where  𝐾(𝑟)  is the complete elliptic integral of the first type. When the modulus of the elliptic sine 

is small (r
2
<<1), we have sn(z,r)→sinz, cn(z,r)→cosz, and the motion is harmonic, 

𝑢(𝑡) ≈ √𝑐3𝑠𝑖𝑛 (√𝑐2(𝑐1𝑐1 − 𝑐3)𝑡) .                                                                                         (15) 

 When r
2
<<1, the magnitude of K(r)≈

𝜋

2
. So, the oscillation frequency 𝜔 = 2√𝑐2(𝑐1 − 𝑐3). 

 When r=1 (𝑐2 = 𝑐3) , expression (13) (sn(z,r)→ 𝑡ℎ𝑧, 𝑐𝑛(𝑧, 𝑟) → 1/𝑐ℎ𝑧) leads to separatrix 

solution 

𝑢(𝑡) = ±
√𝑐1𝑐3𝑠ℎ𝑧

√𝑐1𝑐ℎ2𝑧−𝑐3
 .                                                                                                                 (16) 

 The plot of function (16) is a bell-shaped curve: when z=0, displacement u=0, and when 

z→ ±∞, we obtain u=±√𝑐3. 

 Polynom 𝑃4(𝑦, 𝐸) is positive also in the range 𝑐2 ≤ 𝑦 ≤ 𝑐1. The integral in the left part of 

(8) has the following form: 

∫
𝑑𝑦

√𝑦(𝑦−𝑐3)(𝑦−𝑐2)(𝑐1−𝑦)
=

2

√𝑐2(𝑐1−𝑐3)
𝐹(𝜆, 𝑟)

𝑦

𝑐2
,                                                                          (17) 

where 𝜆 = 𝑎𝑟𝑐𝑠𝑖𝑛 √
(𝑐1−𝑐3)(𝑦−𝑐2)

(𝑐1−𝑐2)(𝑦−𝑐3)
 .                                                                                                                (18) 

 Taking into account expressions (11) and (17) we obtain the following expression for the 

displacement: 

𝑢(𝑡) = ±√[
𝑐2(𝑐1−𝑐3)−𝑐3(𝑐1−𝑐2)𝑠𝑛2(𝑧,𝑟)

𝑐1−𝑐3−(𝑐1−𝑐2)𝑠𝑛2(𝑧,𝑟)
] .                                                                                    (19) 

 Function (19) is even. The expressions for the period of oscillation and the oscillation 

frequency are given by 

T=
2𝐾(𝑟)

√𝑐2(𝑐1−𝑐3)
, 𝜔 =

𝜋√𝑐2(𝑐1−𝑐3)

𝐾(𝑟)
 .                                                                                                 (20) 

 When E≥4/27, polynom 𝑃4(𝑦, 𝐸) has two real roots (y1=0, y2=c) and two complex ones 

(y3,4=a±𝑖𝑏). In this case expression (8) has the following form: 

∫
𝑑𝑦

√𝑦(𝑐 − 𝑦)[(𝑦 − 𝑎)2 + 𝑏2]

𝑦

0

= ±2√2𝑡.                                                                                            (21) 
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 According to [7] the integral in the left part of (21) is expressed with the use of elliptic 

functions so that 

1

√𝑝𝑞
𝐹(2𝑎𝑟𝑐𝑐𝑡𝑔√

𝑞(𝑐−𝑦)

𝑝𝑦
,     

1

2
√

−(𝑝−𝑞)2+𝑐2

𝑝𝑞
)=±2 √2t,                                                                   (22) 

where 𝑝2 = (𝑎 − 𝑐)2 + 𝑏2, 𝑞2 = 𝑎2 + 𝑏2. 

 Let us assume that z=2√2𝑝𝑞t. Then z=±𝐹(𝛾, 𝑘),   where 

𝛾 = 2𝑎𝑟𝑐𝑐𝑡𝑔√
𝑞(𝑐−𝑦)

𝑝𝑦
,  k=

1

2
√

−(𝑝−𝑞)2+𝑐2

𝑝𝑞
 . 

 In order to write the explicit solution let us use the function inverse to the elliptic integral: 

sn(z,k)=sin 𝛾 = 𝑠𝑖𝑛 (2𝑎𝑟𝑐𝑐𝑡𝑔√
𝑞(𝑐−𝑦)

𝑝𝑦
) = 2

√𝑝𝑞𝑦(𝑐−𝑦)

𝑝𝑦+𝑞(𝑐−𝑦)
 . 

 It follows that 

𝑢(𝑡) = ± √𝑞𝑐𝑠𝑛(𝑧,𝑘)

√𝑞𝑠𝑛2(𝑧,𝑘)+𝑝(𝑐𝑛(𝑧,𝑘)±1)2
 .                                                                                              (23) 

 Function u(t) in the form (23) is an uneven function with period 𝑇 =
4𝐾(𝑘)

√𝑝𝑞
. 

 In the range E≈
4

27
 the modulus k

2
=1, and function (23) is approximated by a function 

coinciding with (16) and having an infinite period (𝜔 ≈ 0) – a soft mode. When Е increases, 

complete elliptic integral K(k) decreases, and the oscillation frequency grows. 

2. If condition 𝑘0𝑎2 ≫ ∆𝑉  is fulfilled, the oscillation state moves along the lattice and becomes 

essentially collective in character. In this case it is possible to use the continuum 

approximation by replacing the positions of the nodes nа with continuous variable x. Then the 

Hamiltonian of the chain of active atoms (1) is transformed to the following form: 

𝐻 = ∫
𝑑𝑥

𝑎
{

1

2
𝑚(

𝜕𝑢

𝜕𝑡
)2 +

1

2
𝑚𝑐0

2(
𝜕𝑢

𝜕𝑥
)2 + 𝑉(𝑢)}

∞

−∞
,                                                                               (24) 

where c0 =а√
𝑘0

𝑚
  is the speed of sound. 

 The following partial differential motion equation corresponds to Hamiltonian (24): 

m
𝜕2𝑢

𝜕𝑡2 − 𝑚𝑐0
2 𝜕2𝑢

𝜕𝑥2 +
𝜕𝑉

𝜕𝑥
= 0 .                                                                                                              (25) 

 Let us further consider excitations that move along the chain at constant speed 𝑉 < 𝑐0. Let 

us introduce a new variable z = x – 𝑉𝑡 (i. e., 𝑢(𝑥, 𝑡) = 𝑢(𝑥 − 𝑉𝑡)).   Then partial differential 

equation (25) is transformed into a usual differential equation: 

𝑑2𝑢

𝑑𝑧2
− 𝞬0

2 𝑑𝑉

𝑑𝑍
= 0 ,                                                                                                                            (26) 
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where  𝞬0
2 =1/m(𝑐0

2 − 𝑉2). 

 Integrating equation (26) we obtain: 

𝑑𝑢

𝑑𝑧
= ±√2[𝐸 + 𝞬0

2𝑢2(1 − 𝑢2)].                                                                                                      (27) 

 Expression (27) sets phase trajectories on the plane (u, du/dz). The phase portrait has five 

basic elements: critical points of the “center” type at u = ±1/√3 and three critical saddle points 

u = 0, ±1, du/dz = 0. A trajectory leaving one saddle point and entering another – a separatrix – 

separates areas of the phase plane with significantly different nature of motion. In our case the 

separatrix curve connects three critical points and separates time-periodic solutions from aperiodic 

ones. Closed trajectories correspond to solutions that have the form of space-periodic waves. 

Infinitely growing solutions correspond to open trajectories. 

 Integrating equation (27) we obtain: 

∫
𝑑𝑢

√2[𝐸+𝞬0
2𝑢2(1−𝑢2)2]

𝑢

𝑢0
=

1

√2
∫

𝑑𝑢

√𝑃6(𝑢,𝐸)

𝑢

𝑢0
= ±𝑧,                                                                                  (28) 

where 𝑃6(𝑢, 𝐸) = 𝐸 + 𝞬0
2𝑢2(1 − 𝑢2)2. Integration limits u, u0 are chosen according to condition 

𝑃6(𝑢, 𝐸) > 0. Using the variable replacement u
2
=y it is possible to transform expression (28) to the 

following form: 

∫
𝑑𝑦

𝑃4(𝑦,𝐸)

𝑦

𝑦0
= ±2√2𝑧,                                                                                                                       (29) 

where  𝑃4(𝑦, 𝐸) = 𝞬0
2(𝑦4 − 2𝑦3 + 𝑦2) + 𝐸𝑦. 

 Periodic solutions exist at negative energies (–4𝞬0
2/27≤E≤0). In this case equation 

𝑃4(𝑦, 𝐸) = 0 has four real roots 𝑐1 > 𝑐2 > 𝑐3 > 𝑐4 = 0. 

Polynom 𝑃4(𝑦, 𝐸) is positive at 𝑐3 < 𝑦 < 𝑐2, and the integral in the left part of (29) is 

expressed in Jacobian elliptic functions [9] 

∫
𝑑𝑦

√𝑦[𝞬0
2(𝑦3−2𝑦2+𝑦)+𝐸]

𝑦

𝑐3
= ∫

𝑑𝑦

√𝑦(𝑦−𝑐3)(𝑐2−𝑦)(𝑐1−𝑦)
=

2𝐹(𝛿,𝑞)

√𝑐2(𝑐1−𝑐3)
,

𝑦

𝑐3
                                                      (30) 

where  𝛿 = 𝑎𝑟𝑐𝑠𝑖𝑛√
𝑐2(𝑦−𝑐3)

𝑦(𝑐2−𝑐3)
,    𝑞 = √

𝑐1(𝑐2−𝑐3)

𝑐2(𝑐1−𝑐3)
 .                                                                             (31) 

 Taking into account the right part of expression (29) we obtain F(𝛿, 𝑞) = ±𝑝, 𝑝 =

√2𝑐2(𝑐1 − 𝑐3)𝑧. 

 The explicit solution of equation (29) is written with the use of Jacobi sine function 

sn(p,q)=sin𝛿, so that y(t)=
𝑐2𝑐3

𝑐2−(𝑐2−𝑐3)𝑠𝑛2(𝑝,𝑞)
. 

 Returning to the initial variable (y>0) we find that 
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u(t)=±
√𝑐3𝑐2

√𝑐2−(𝑐2−𝑐3)𝑠𝑛2(𝑝,𝑞)
 .                                                                                                              (32)

  

 Function u(t) of form (32) is an even function with period 

T =
2𝐾(𝑞)

√𝑐2(𝑐1−𝑐3)
 .                                                                                                                                 (33) 

 When the modulus of the elliptic sine is small (q<<1), functions sn(p,q),  K(p,q) can be 

expanded as a power series by parameter q (see [9]), and we obtain the following expressions for 

the displacement and the oscillation frequency: 

u(t)≈ ±√
𝑐2𝑐3

𝑐2𝑐𝑜𝑠2𝑝+𝑐3𝑠𝑖𝑛2𝑝
,   𝜔 ≈ 2√𝑐2(𝑐1 − 𝑐3) (1 −

𝑞2

4
).                                                           (34) 

When q→ 1, oscillation period (33) tends to infinity (K(q) → 𝑙𝑛 (4/√1 − 𝑞2)), and 

frequency tends to zero. Jacobi sine becomes a hyperbolic tangent: sn(p,q)→ 𝑡ℎ𝑝, and expression 

(32) is the following separatrix solution 

u(t)=±√
𝑐3𝑐2

𝑐2−(𝑐2−𝑐3)𝑡ℎ𝑝
 .                                                                                                                 (35) 

The plot of function (35) is a bell-shaped curve: when p=0, displacement u=±√𝑐3, and when 

p→ ±∞ , we obtain u=±√𝑐2. 

Polynom 𝑃4(𝑢, 𝐸) is positive also at y>c1, and at the same time 

∫
𝑑𝑦

√𝑦(𝑦−𝑐1)(𝑦−𝑐2)(𝑦−𝑐3)
=

2

√𝑐2(𝑐1−𝑐3)
𝐹(𝜈, 𝑞)

𝑦

𝑐1
,                                                                                    (36) 

 

where = 𝑎𝑟𝑐𝑠𝑖𝑛√
𝑐2(𝑦−𝑐1)

𝑐1(𝑦−𝑐2)
, 𝑞 = √

𝑐1(𝑐2−𝑐3)

𝑐2(𝑐1−𝑐3)
 . 

 Let us assume that d=√2𝑐2(𝑐1 − 𝑐3)z. Then F(𝜈, 𝑞) = ±𝑑  and, therefore, snd=sin 𝜈 =

√
𝑐2(𝑦−𝑐1)

𝑐1(𝑦−𝑐2)
 . 

It can be easily found further that 

u(t)=± √𝑐1𝑐2𝑐𝑛(𝑑,𝑞)

√𝑐2−𝑐1𝑠𝑛2(𝑑,𝑞)
.                                                                                                                      (37) 

 Taking into account that 𝑐1 > 𝑐2  and  |𝑠𝑛(𝑑, 𝑞)| ≤ 1  we obtain from expression (37) that, 

if condition 𝑐2 − 𝑐1𝑠𝑛2(𝑑, 𝑞) ≤ 0 is fulfilled, oscillation states of collective character cannot be 

propagated. 
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Conclusion 

 The range of fluctuations of systems allowing structural phase transitions was determined 

for the accepted model of interatomic interaction. Periodic and soliton-like solutions of the 

nonlinear differential motion equation were obtained. The nature of the phase transition (disorder-

order type and displacive type) is determined by the ratio of the bond energy of active atoms to the 

height of the potential barrier in the single-particle potential with a triple minimum. Possible objects 

of application of the obtained results can be crystals of Me
I
Me

II
BX4 family, as well as crystals or 

metals, on the surface of which atoms of gases or metals are absorbed (for example, hydrogen on a 

tungsten surface). 
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