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Introduction 

 

For historical reasons the linear gradient Fourier equation ),(),( tMgradTtMq 


 is the 

most commonly practically encountered model of heat conductivity in undeformed bodies. Along 

with the energy equation for isotropic solid bodies 
( , )

( , ) ( , )
дT M t

c divq M t F M t
дt

     Fourier's law 

leads to an equation of parabolic type for non-stationary heat transfer of the form 

( , ) 1
( , ) ( , )

дT M t
a T M t F M t

дt c
   , 0,  tDM                                                (1) 

and boundary value problems corresponding to (1) with the following initial and end conditions: 

)(),( 00 MФtMT t  , ,DM                                                                                   (2) 

),(),(
),(

321 tMtMT
дn

tMдT
  , .0,  tSM                                                 (3)  

Here D  is the finite or partially limited convex area of variation of ),,( zyxM , S  is a 

piecewise smooth surface limiting area D , n


 is an external normal to S  (a vector continuous in 

the points of S), )0,(  tDM  is a cylindrical area in phase space ),,,( tzyx  with the basis 

D  at 0t . The parameters in (1)–(3) are thermophysical characteristics of the medium, constants 

in the range of temperatures not exceeding the transition points [1, 2]. The boundary functions in 

(1)–(3) belong to the class of functions )(),( 0 CtMF , )()( 1

0 CMФ , 
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)0(),( 0  tSCtM , the required solution is )()(),( 02  CCtMT ; 

)(),( 0 CtMTgradM , 02

2

2

1   . 

 The author of [1] developed a series of analytical methods for finding exact solutions of 

boundary value problems (1)–(3), particularly, in the form of the following integrated representation 

at temporary and spatial nonuniformities in the initial problem formulation: 

0 0

0

0

( , ) ( , , , )
( . ) ( ) ( , , , ) ( , , , ) ( , )

1
( , ) ( , , , )

t
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дT P дG M t P
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дn дn
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c



 
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  




 
    

 



  

 

 

             (4) 

Here ),,,( PtMG  is Green function for this area as the solution of a simpler problem for the 

uniform equation (1) with uniform boundary conditions of the same type as (3): 

),,,( PtMGa
дt

дG
M ,  ,,  tDM                                                        (5) 

),(),,,( PMPtMG t    , ,),( DPM                                                   (6) 

0),,,(
),,,(

21  


 PtMG
дn

PtMдG
, .,  tSM                           (7)  

 For limited areas D  of the canonic type Green function G  is given by 

   







 






1

2

2
,exp

)()(
),,(),,,(

n

n

n

nn ta
PM

PtMGPtMG             (8) 

where )(Mn  and 
2

n  are eigenfunctions and eigenvalues of uniform problem 














,0)(
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,0)()(
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Mд
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,

,

SM

DM




                   (9) 

corresponding to (1)–(3), 


D

Mnn dVM )(22

 is the square of the norm or the eigenfunctions. 

Here  (z) is Dirac delta function. On the basis of the solution of spectral problems (9) Kartashov 

tables were developed in [1–3]. (This is a conventional term in the scientific and educational 

literature.) The tables use a rather simple scheme and allow writing the exact analytical solution of 

the thermal problem (1)–(3) in the Cartesian, cylindrical and spherical systems of coordinates in the 

form of Fourier – Hankel series with improved convergence up to the area boundary. This is very 
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convenient for engineering calculations when determining the thermophysical characteristics of 

materials, determining the warming up time of samples, establishing the time of transition to the 

stationary phase when heating or cooling, etc. 

Despite some paradoxes encountered when using model representations (1)–(4) [the lack of 

inertia of heat conductivity in Fourier's law and, as a result, the conclusion following from (4) about 

the infinite rate of heat transfer; the singular character of the heat flow and of the speed of the 

isotherms motion in the area 0x , 0t ], the latter fact does not limit the scope of application of 

boundary value problems (1)–(3) as a subject of the practically immeasurable number of studies 

covering new substantial mathematical objects and the increasing number of the most diverse 

analytical methods giving exact analytical solutions of thermal problems (1)–(3) [1–3]. 

Since 1930s studies on heat transfer in liquids, gases and solid bodies with a finite rate have 

been developed ([4] and references in [4]). In 1940 L. Tisza and in 1941 irrespective of him 

L. Landau demonstrated the possibility of the existence of a finite rate T  of heat transfer in liquid 

helium II. (This was named second sound – SS.) These studies were continued by V. Peshkov (1946), 

who showed that SS can exist in pure solid bodies. (It was found that 720T m/s in crystals at 

KT 04.3 ).  J. Ward and J. Wilks (1952) suggested a formula for evaluating T  in solid bodies with 

the use of measurable macroscopic parameters (
3

P
T


  in crystals, in metals, P  is the sound 

speed). R. Dingle (1952) studied heat transfer in dielectrics, superconductors and ferromagnetics, 

F. London (1954) – in metals and glasses, C. Ackerman, B. Bertman, H. Fairbank, R. Guyer (1966) – 

in crystalline helium. M. Chester (1963) considered the second sound in solid bodies from the 

macroscopic point of view and indicated that the equation of heat transfer must include a summand 

containing velocity T  on the basis of results obtained by Maxwell – the first one who introduced 

inertia into the transfer equations – and Cattaneo, who suggested a version of Fourier law with a 

relaxation member of heat flow. In 1965 S. Kaliski [5] established the generalized law of heat 

conductivity by introducing the rate of heat flow change – thermal inertia – into Onsager’s principle. 

Practically at the same time (1965) and independently for isotropic bodies A.V. Lykov [3] established 

the generalized law of heat and mass transfer as a hypothesis of finite rates of heat and mass transfer 

for heat and moisture transfer in capillary-porous bodies. 

 Let us write the generalized system of Onsager equations in the form 

'

1

( , )( , )
( , ) ( , ) ,

N
k

r k k k

k

X M tJ M t
J M t L L X M t L

t t

 
   

  
  
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where ( , )J M t  is the flow of substance (heat, mass etc) in area D  at 0; ( , )kt X M t  are 

thermodynamic driving forces (gradients of temperature, concentration etc); ', ,r k kL L L  are kinetic 

coefficients (constant phenomenological coefficients of transfer). If we neglect the time derivative of 

driving force 
kX  assuming that ( , ) ( , )J M t q M t  is the vector of heat flow density, and 

, ( , ),r r k kL X qradT M t L       (the medium heat conductivity) ( 1N  ), we obtain the 

following generalized law of heat conductivity for solid bodies: 

,
),(

),(),(
дt

tMqд
tMgradTtMq r




                                                               (10) 

where r  is the relaxation time of the heat flow connected with the heat transfer rate by the relation 

r
T

a


  . For metals )1010( 1114  r  s. For amorphous bodies like inorganic glass and 

polymers having a complex structure )1010( 511  r  s. (For inorganic glass 710r  s, for 

organic glass 1110r  s.) For nitrogen 910r  s. Experimental measurement of r  in many cases 

is not possible. The rate of heat transfer for steel 1800T  m/s (the speed of sound 6100P  m/s). 

For aluminum 2930T  m/s ( 6260P  m/s). For inorganic glass 610*2T  m/s ( 310*5.4P  

m/s). For nitrogen 150T  m/s, and for gases in the conditions of rarified supersonic stream the 

influence of the final rate of heat transfer on heat exchange becomes noticeable. Similar influence can 

show itself also at very low temperatures (for example, in liquid helium 19T  m/s at KT 04.1 ) 

and even at ordinary temperatures in solid bodies, when a small period of time in a non-stationary 

process is considered [6]. The energy equation for isotropic solid bodies and relation (10) lead to the 

equation of heat conductivity of the hyperbolic type: 

2

2

( , ) ( , ) ( , ) 1
( , ) ( , ) ,r

r

r

дT M t д T M t дF M t
a T M t F M t

дt дt c дt




 

 
     

 
 .0,  tDM                (11) 

and to corresponding boundary value problems of thermal conductivity for equation (11) of the 

generalized form. 

Equation (11) was also obtained by A.S. Predvoditelev. However, he proceeded from other 

ideas, namely, from the analysis of the displacement velocities of isothermal surfaces with the use 

of Riemann representation, i. e., he completely rejected relaxation formula (10). 

Systematic publications on hyperbolic models of transfer can be associated with late 1960s. 

The authors of [6] carried out one of the first works using model representations for equation (11) in 

order to describe the thermal reaction T(z, t) of an elastic half-space 0z , 0t  at thermal heating 

of its boundary (Derichlet's boundary conditions). Having analyzed the analytical solution of a 
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similar problem at boundary temperature  ))((),0( 00

0

0
0 ttttt

t

TT
TtT C 







 
  , ( (z)   is 

Heaviside function), A.V. Lykov justified the physical sense of the final rate of heat transfer: it is the 

time derivative of heat penetration depth. The generalized problems of transfer considerably differ 

from the classical ones (1)–(3): they are more difficult when finding analytical solutions of these 

problems. This is the reason for the very insignificant progress in finding exact analytical solutions of 

boundary value problems for equation (11) and mostly for semi-limited area 0z , 0t  (in the 

main statement) at constant boundary functions and zero boundary conditions [7, 8]. For areas of the 

canonic type (an infinite plate, a continuous or hollow cylinder, a continuous or hollow sphere, etc.) 

exact solutions of hyperbolic models of transfer are still unknown, and this problem essentially 

remains open including the correct statement of boundary value problems for the hyperbolic 

equations. This publication is devoted to all these questions. 

1. Boundary conditions for the hyperbolic equation of heat conductivity. The initial conditions 

for equation (11) can be written as functions of the general form 

)(),( 00 MФtMT t  ,  DM  ,                                                                  (12) 

)(
),(

10 MФ
дt

tMдT
t  ,   DM  .                                                                       (13) 

 Depending on the form of boundary conditions the following problems can be considered for 

equation (11): 

the Dirichlet boundary value problem (first-type boundary condition) 

),,(),( tMtMT C   0,  tSM ;                                                                         (14) 

the Neumann boundary value problem (generalized second-type boundary condition) 

),,(1
),(

tM
дt

д

дt

tMдT
Cr  








   0,  tSM ;                                                  (15) 

the mixed boundary value problem (generalized third-type boundary condition) 

 ,),(),(1
),(

tMtMT
дt

д
h

дn

tMдT
Cr  








   0,  tSM .                                 (16) 

The functions in (12)–(16) are of the function class )(),( 2  CtM ; )()( 1

0 DCMФ  ; 

)()( 0

1 DCMФ  ; )(),( 1 CtMC ; the required solution )()(),( 12  CCtMT . 

Generalized boundary conditions (15)–(16) are written in the differential form allowing 

another form, the integrated one. The latter is possible only under certain conditions imposed on the 
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boundary functions in (12)–(16). Thus, for (15) it is possible to write equivalent second-type 

boundary condition 

),(
1

exp
),(1

0

tMd
t

дn

tMдT
C

t

rr


















 
  , 0,  tSM ,                                    (17) 

if equality 0)0,( MC , SM   is true. For (16) we have equivalent integral form 

 ),(),(exp
),(1

0

tMtMThd
t

дn

tMдT
C

t

rr















 
 , 0,  tSM ,                        (18) 

if equality )()0,( 0 МФMC  , DM   is true. 

2. Analytical solutions. The second- and third-type boundary conditions in the form of (main) (15)–

(16) show that the corresponding spectral problems cannot be solved for the second and third 

boundary value problems. So, Kartashov's tables of integrated Fourier-Hankel transformations 

developed on the basis of solving these problems cannot be applied (in the Cartesian, cylindrical and 

spherical systems of coordinates) when finding analytical solutions. Therefore, exact analytical 

solutions of the second-type, third-type and mixed boundary value problems for areas of canonic type 

are still not found. 

Let us consider one of such problems of applied thermomechanics, which is of interest for 

the theory of heat shock [2]. Let us imagine that there is a plane-parallel elastic uniform isotropic 

layer of finite thickness l  with boundaries free from strain. The layer occupies area 

0 , , .x l y z      in the Cartesian coordinates. Heat exchange occurs through a surface of 

the layer x l  with the external medium, the temperature of which changes at the initial timepoint 

from 0T  to cT  ( 0cT T ) remaining constant afterwards, and surface 0x   is maintained at 

temperature 0T . When 0t  , the temperature of the layer is equal to oT , and the rate of heating is 

assumed to be equal to zero. Let us write the mathematical model of the problem for equation (11) 

with respect to temperature function ( , )T x t  (in the absence of internal sources) in dimensionless 

variables assuming that 

2 2 0
0 0

0

( , )
/ ; / ; ; / ; ( , )r

c

T x t T
z x l F at l Bi hl c a l W z F

T T



     


. 

We have the following hyperbolic model of non-stationary heat conductivity: 

2 2

2 2

0 0

,
W W W

c
F z F

  
  

  
              00 1, 0,z F                                                 (19) 

0 0 0

0

0,F o F

W
W

F
 


 


                0 1,z                                                         (20) 
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0 0,zW                                  0 0,F                                                            (21) 

1 1

0

(1 )( 1),z z

W
Bi c W

z F
 

 
    

 
    0 0.F                                                    (22)   

 In Laplace’s image domain 0 0

0

( , ) ( , )exp( ) oW z p W z F pF dF



   the solution of problem 

(19)–(22) is given by 

W ( , )z p 
( )

Bish z

pch Bi sh



   
,                                                              (23) 

where 2 .c p p     Expressions of type (23) are typical images for hyperbolic models of 

transfer after applying Laplace transformation to (19)–(22). Transition to the original in (23) 

requires long transformations. So, we will discuss only the main points of the transition. Let us use 

equation [1] 

1 2 1 2
1 2

1 2

exp( ) 1 exp( 2 )
2

sh ch
   

     
 

  
    

 
, 

to transform equation (23) to the form 

2
1

,1
1 0 1

1
( 1/ )

( ) 1 1
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( ) 1
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n

n

k
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n o k n n
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 



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 


     
 

 
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
2

1

1

1
( 1) exp ( ) ( 1/ )],

( 1/ )

k

kn

k

z c p p c
c p p c




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  

            (24) 

where 1 2( ) (2 1) ; (2 1) .n nz n z n z        

 The original of expression 

1

1

1
( 1/ )

1
( )

1
( 1/ )

n

n

c Bi
p

W p
p

c Bi
p

 

 



 

 

is found by using the following relations of operational calculus: 

1 0 0

0

1 1
( ) ( ) (2 ) ( ) ,W p F J F F d
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  


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0 1 0 01
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2

1 2 21 3/2
00 0
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n

n

p Bi y y
F p F p F y dy

Fp Bi F






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
  



viii 

0 0
2 2 01

2( 1/ )
( ) exp( ) ( ) ( )

( 1/ )

n

nn

F Fp Bi
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p Bi Bi Bi
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0 03/2
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1 2
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n

y y y
F F c F y L dy

F Bi BiF



      

 Thus, 

2

1 0 0 03/2

0 0

1 1 2
( ) (2 )exp( ) exp( ) ( ) .

42
n

y y y
W F J F c d y L dy

Bi Bi
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 

                        (25) 

Here 0 ( )J z   is the first-type Bessel's function of zero order; ( )nL z   are Laguerre's polynomials. 

 The original of expression 

, ,

1
( , ) exp ( ) ( 1/ )

( 1/ )
k n k nW z p z c p p c

c p p c
     

   
 

is written as follows: 

2 20
. 0 0 0 , 0 ,

1 1
( , ) exp( ) ( ( )) ( )

2 2
k n k n k n

F
W z F I F c z F c z

c cc
        

  
                    (26) 

Here 0 ( )I z  is the modified Bessel’s function. Now, having (25) and (26), let us use the convolution 

theorem to find the exact solution of problem (19)–(22) in the following form: 

02
1

0 1 , 0

0 1 0

( , ) ( 1) ( ') ( , ') '.

F

k

k n

n k

W z F W W z F d  




 

                                                         (27) 

 However, solution (27) can have another functional design, and the features of hyperbolic 

models of transfer are distinctly shown here. 

 Let us consider briefly this matter. 

 The denominator of function (23) written as 

1

2

/( , )( , )

( )

shzf z pW z p

Bi f p pch Bi sh

 
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
                                                  (28) 

in plane p  has an infinite amount of zeroes (poles) determined by equation 

0n n n np ch Bi sh    , 

whence it follows that 

2 2 2, 0, ,n n n n n n n ni c p p p Bi tg            

and 

21
(1/ 2 ) , 1/ (4 )n n n np c i c

c
        


, 
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the value 0p   as well is a pole of function (28), and numbers 0n   are roots of equation 

2 2 0n n n nBi c tg Bitg       .     (29) 

Using Vaschenko-Zakharchenko’s expansion theorem [1] in the form 

0 11
0' '

12 2

( , ) ( , )( ,0)
exp( )

(0) ( )

n
n

n n

W z F f z pf z
p F

Bi f f p





   

after long transformations we find the original of transform (28) – the exact analytical solution of 

problem (19)–(22) in a form differing from (26): 

0( , )
1

Biz
W z F

Bi
 
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1 0 2 0 0

2 2
1 1 2

( cos sin )cos sin
2 exp( )

2

n n n n n n

n n n

F F z F
Bi

c

     

 






 

 
 ,           (30) 

where 

2

1 2cos , ( sin cos ) .n n n n n n n nBic            

Applying the above approaches it is possible to obtain exact analytical solutions of thermal 

problems for equation (11) in area [0, ], 0x l t   with boundary conditions of any type. However, if 

equation (11) and boundary conditions (12)–(18) contain sufficiently general temporal and spatial 

nonuniformities, technical difficulties of solving can become insuperable. These difficulties can be 

avoided by uniting the method of Green function for hyperbolic models of transfer with the 

operational method (which implies initial finding of the corresponding Green function – a simpler 

problem, and then finding the required solution by means of its integrated representation – an 

analog of (4)–(8) for equation (11)). This method was developed by the author of [9]. Thus, in case 

of the first boundary value problem in (14) or the second boundary value problem in (15) Green 

function is given by 

2

21 2

( ) ( ) 1
( , , ) sin ( ) ( ) exp( ),

4 21
( )

4

n n
r n

n r r

n r n

M P t t
G M t P a

a

 
  

 
 





    
    

  

              (31) 

where ( )n M  and 2

n  are eigenfunctions and eigenvalues of spectral task (9) according to the first- 

or second-type boundary conditions. Having result (31) and the integral relation in [9] it is easy to 

write the analytical solution of equation (11) with sufficiently general boundary conditions. Note 

that results (26), (30) and (31) are apparently presented in press for the first time. 

The above ratios clearly demonstrate the difficulties of finding analytical solutions of 

hyperbolic models of transfer. In this respect a lot of work is expected to be done for the 

development of the corresponding direction of the analytical theory of heat conductivity of solid 

bodies. 



x 

Conclusions 

Fundamentally new results of the analytical theory of heat conductivity of solid bodies 

relating to hyperbolic models of transfer are presented. It is shown that the method of Green 

function in combination with the operational method enables obtaining exact the analytical 

solutions of the problems in the integrated form containing all the nonuniformities in the initial 

formulation of the problems. 
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