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Abstract

Objectives. The study aimed to analyze the current antiseptics and disinfectants, explore 
the possibility of synthesizing various antiseptics including oligohexamethylene guanidine 
hydrochloride (OHMG-HC) using microfluidic technology, and investigate the main synthesis 
parameters affecting the properties of the resulting product.
Methods. This article presented a review of literature sources associated with investigations of 
antimicrobial resistance, the uses of agents based on polyhexamethylene guanidine hydrochloride, 
oligohexamethylene guanidine hydrochloride, and other salts, obained using modern synthesis 
technologies with microreactors.
Results. The relevance of developing production technologies for the “OHMG-HC branched” 
substance was determined. The microfluidic method for the synthesis of polymers, and its 
application prospects for obtaining the target substance were compared with the existing methods. 
Advantages of the microfluidic method were indicated. 
Conclusions. Microreactor technologies allow for more accurate control of the conditions of the 
polycondensation reaction of the starting monomers and increase the yield and selectivity of 
the oligomers obtained, leading to an increase in the product purity and process efficiency, in 
contrast with other known methods. The use of microreactor technologies for the synthesis of 
branched oligohexamethylene guanidine hydrochloride products is a promising strategy.
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Аннотация

Цели. Цель исследования – проанализаровать применяющиеся антисептики и дезинфек-
танты, рассмотреть возможность синтеза различных антисептиков и отдельно синте-
за олигогексаметиленгуанидина гидрохлорида (ОГМГ-ГХ) с применением микрофлюидной 
технологии, а также изучить основные параметры синтеза, влияющие на характери-
стики получаемого продукта. 
Методы. Представлен обзор литературных источников, связанных с иследованиями ан-
тимикробной резистентности, применением средств на основе полигексаметиленгуа-
нидина гидрохлорида, олигогексаметиленгуанидина гидрохлорида, а также других солей, 
полученных современными технологиями синтеза с использованием микрореакторов.
Результаты. Определена актуальность разработки технологии получения субстанции 
«ОГМГ–ГХ разветвленный». Рассмотрены существующие способы получения субстанции 
и их недостатки. Также рассмотрен микрофлюидный способ синтеза полимеров, его до-
стоинства и перспективы его использования для получения целевой субстанции. 
Выводы. Микрореакторные технологии позволяют более точно контролировать усло-
вия реакции поликонденсации исходных мономеров и повышать выход и селективность 
полученных олигомеров, что приводит к повышению чистоты продукта и эффективно-
сти процесса, в отличие от других известных способов. Использование микрореакторных 
технологий для синтеза разветвленных продуктов гидрохлорида олигогексаметиленгуа-
нидина является перспективной стратегией.

Kлючевые слова: антисептик, дезинфектант, алкиленгуанидины, олигогексаметиленгуа-
нидина гидрохлорид, микрофлюидные технологии, микрореактор
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INTRODUCTION

Currently, one of the most important global 
problems is the progressive resistance of pathogenic 
microorganisms to applied biocidal drugs, and special 
measures are being developed to combat this problem 
[1]. Approximately 50000 people die annually from 
infectious diseases caused by antimicrobial-resistant 
microbes in Europe and the United States, with this 
number reaching hundreds of thousands in developing 
countries. 

The resistance of microorganisms is manifested 
by the presence of structural polymers in their cell 
membrane, e.g., peptidoglycan. Peptidoglycan 
provides mechanical strength and structure to the cell, 
as well as thickness and shape, which depend on the 
type of peptidoglycan.1 To protect their cytoplasmic 
membrane, gram-positive bacteria possess a thick 
layer of peptidoglycan, while gram-negative bacteria 
possess inner and outer membranes surrounding a 
relatively thin peptidoglycan matrix and periplasmic 
space. There are components associated with both 
types of cell walls that limit the ability of antibiotics 
and antiseptics to penetrate these structures (efflux 
pumps that remove toxins, protective enzymes (e.g., 
β-lactamases), and complex carbohydrate networks). 
In general, the resistance of microorganisms can 
be divided into two types. The first is antibiotic 
tolerance, i.e., where a cell under the influence of 
chemical action reduces its growth and metabolism 
or inactivates the targets of the antibacterial drug. 
Antibiotic tolerance is not inherited, but is developed 
under certain external conditions, where part of the 
population evolve into persistent forms with multiple 
tolerance. The second type is antibiotic resistance, in 
which the targets are modified, destroyed, released 
from the cell, or rendered inaccessible because of 
the decrease in the cell membrane permeability. 
This decrease in cell permeability is the nonspecific 
resistance mechanism that leads to the development 
of multidrug resistance. This resistance information 
is transmitted at the genetic level and is an invariable 
trait in particular species [2]. Furthermore, this 
resistance problem is aggravated by the enclosure of 
most pathogenic bacteria in biofilms, which create 
an additional barrier for antimicrobial agents [3]. 
The biofilm contains a cellular component—one or 
several cultures of bacteria—and an extracellular 
matrix containing polysaccharides, glycopeptides, 
nucleic acids, and lipids in its structure [4].

In addition to antibiotic resistance, the resistance 
of pathogenic microflora to disinfectants is attracting 
significant concern. According to a study [5], several 
microorganisms exhibit resistance to the ubiquitous 
chlorhexidine, as evidenced by the increased value of 
the minimum inhibitory concentration. Healthcare-
associated infections (HCAIs) pose a threat to patients 
in hospitals. The inappropriate use of antibacterial 
agents by medical institutions has led to the rapid 
development of multidrug resistance. According to 
expert forecasts, the mortality rate associated with 
HCAI will increase annually, if effective measures 
to combat resistance are not developed. There are 
various/different routes for solving this problem, 
from reducing the use frequency of antibiotics and 
replacing them with antiseptics [6–9] to, of course, 
exploring and implementing new antimicrobial agents 
that meet modern requirements.

The development of new antibacterial agents 
is a long and complex process, which is why large 
companies are wary of investing in this area. The 
results of screening new compounds against a group 
of ESKAPE pathogens characterized by significantly 
high resistance have been reported, and not a single 
compound was found to be active against gram-
negative organisms. Many compounds that exhibit 
good whole cell activity have been found to be 
cytotoxic to mammals. In this regard, the development 
of new and effective antibiotics requires an in-depth 
study of the mechanisms of cell permeability, point 
mutations using molecular modeling, and other 
innovative methods; unfortunately, these require high 
material costs that may be unjustified [10].

Regarding the above information, it is necessary 
to review the antiseptics currently in use, considering 
the advantages and disadvantages of each of the 
presented classes.

TYPES OF ANTISEPTICS

The current classes of antiseptics can be 
categorized as follows.

Oxygen-active compounds (hydrogen peroxide, 
sodium percarbonate, peracetic and performic acids, 
and others). The biocidal effect is manifested by the 
released active oxygen. The representatives of this 
class have several disadvantages, namely toxicity, the 
ability to cause burns, and high cost2.

Chloractive compounds (bleach, chloramines, 
sodium and lithium hypochlorites, and others). 
The antimicrobial action is effected by the released 

1 The Review on Antimicrobial Resistance, 2014. Available 
from URL: https://amr-review.org/sites/default/files/AMR%20
Review%20Paper%20-%20Tackling%20a%20crisis%20
for%20the%20health%20and%20wealth%20of%20nations_1.
pdf (accessed March 27, 2021).

2 Policy for the Control of Multi-Resistant gram Negative 
Bacteria. NHS, The document for the development and 
management of UHSM-wide policy or procedural documents. 
Available from URL: http://mft.nhs.uk (accessed March 30, 
2021).
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Fig. 1. Guanidinium cation formation.

chlorine. These compounds are economical and 
effective against many groups of microorganisms; 
however, they exhibit high toxicity [11, 12].

Aldehydes (glutaraldehyde, succinic aldehyde, 
formaldehyde, glyoxal, and others). Most 
representatives of this group are toxic and exert 
allergenic, carcinogenic, mutagenic effects; further, 
they cause diseases of the skin, mucous membranes, 
internal organs [13, 14].

Alcohols (ethanol, 2-propanol, and others). 
For the manifestation of antiseptic properties, the 
concentrations of ethanol and isopropanol must be 
above 70% and 60%, respectively. Alcohols are fire 
hazardous substances and can have a narcotic effect [15].

Phenol and its derivatives have a film-forming 
effect, which accounts for their prolonged action. 
However, the representatives of this group are overly 
toxic [16].

Iodine compounds. They consist of iodine–
carrier complexes, which allow the release of iodine. 
The main disadvantages of these compounds are their 
weak sporicidal effect and the ability to cause burns [17].

Alkylamines. Here, the biocides are primary, 
secondary, and tertiary amines. Although they 
influence most microorganisms, they do not exert 
any sporicidal effect. Thus, as a rule, they are used in 
combined composition [18].

Quaternary ammonium compounds (QACs) are 
widely used in practice and meet safety requirements. 
However, they have a narrow spectrum of action, 
which manifests in the absence of proper action 
against spores, simple viruses, gram-negative 
bacteria, and mycobacteria. Additionally, QACs 
are inactivated by negatively charged surfactants. 
Therefore, this group can be used in a combined 
composition with guanidines, amines, and aldehydes. 
In this combination, they are effective against both 
non-enveloped and enveloped viruses [19, 20].

Guanidines. An important advantage of 
guanidine derivatives is their propensity for prolonged 
action. These compounds have a wide spectrum of 
activity, including against bacteria from the ESKAPE 
group [21] and viruses [22], as well as low toxicity 
to humans and animals [23]. Compared to other 
compounds, guanidine derivatives are promising and 
have practically no drawbacks; therefore, their use as 
alternatives to antibiotics and antiseptics that have 
lost their relevance due to resistance is recommended.

GUANIDINE DERIVATIVES

Guanidine derivatives are referred to as cationic 
surfactants. For most guanidines, the main targets are 
important biogenic compounds and cell biopolymers, 

which have a high affinity for nitrogenous bases, such 
as pyridines and xanthines. There are two interaction 
mechanisms for binding with the targets: 1) by 
metabolite substitution and 2) competitive antagonism 
with normal metabolites [24]. In general, the action 
mechanism of guanidine derivatives is initiated by the 
protonation of guanidine, followed by the formation of 
a cation (Fig. 1), in which the positive charge is evenly 
distributed among all nitrogen atoms [25].

The subsequent processes are as follows. Upon 
adsorption on the negatively charged surface of the cell 
membrane of bacterial cells, guanidine polycations block 
important vital processes, such as respiration, nutrition, 
and the transport of metabolites through the bacterial 
cell wall. Further diffusion of antiseptic macromolecules 
through the cell wall causes irreversible damage to the 
cytoplasmic membrane, nucleotide, and cytoplasm. This 
process depends on many factors, including the magnitude 
of the surface activity, lipophilicity, water solubility, 
and the molecular volume of the guanidine derivative 
molecule. The binding of guanidine derivatives with acid 
phospholipids, proteins of the cytoplasmic membrane, 
leads to its rupture. Subsequently, the blockage of the 
respiratory system, loss of pathogenicity, and collapse of 
the microbial cell occur [26].

Among the derivatives of guanidine are compounds 
with polymeric and oligomeric structures, containing 
fragments of various guanidine derivatives. The 
advantages of polyguanidines, which are applied in the 
form of salts of various acids, enable their application as 
biocidal agents in various fields.

Polyguanidines and their derivatives. The 
prominent representatives of this class of compounds 
are polyhexamethylene guanidine hydrochloride 
(PHMG-HC) and PHMG phosphate (Figs. 2a and 2b). 
The spectrum of antimicrobial activity of PHMG-HC 
covers gram-positive and gram-negative bacteria, 
aerobic and anaerobic bacteria, spore-forming bacteria, 
mycobacteria, and viruses. Despite its wide spectrum, 
PHMG-HC is hypoallergenic and has low toxicity 
[27, 28]; it can also be used in conjunction with other 
biocidal components, e.g., as a skin antiseptic [29, 30] 
or in solid dosage form [31]. The antifungal activity 
of PHMG-HC enables its application for conservation 
[32] and as an effective sporicidal tool for combating 
bacterial spores and nosocomial infections [33]. This 
compound can be applied as a component of composite 
nanofibers based on chitosan and polyethylene oxide [34].
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a b
where n = 30–90

where n = 3–10, and z = 0.15–1.10

Fig. 2. Structural formulas of polyguanidine derivatives: (a) PHMG-HC and (b) PHMG phosphate.

Phosphate PHMG, similar to PHMG-HC, is 
synthesized by incorporating an acid anion into the 
structure of PHMG. In preclinical studies, this salt 
has exhibited increased antimicrobial activity against 
gram-positive and gram-negative bacteria, as well as 
fungi [35]. Fungicides based on PHMG phosphate can 
be formulated for use in dental practice [36, 37].

In addition to PHMG-HC and PHMG phosphate, 
other salts of this guanidine derivative can be 
used in practice. Gluconate and sulfate PHMG are 
employed for the treatment of infectious diseases of 
the gastrointestinal tract; hydrosuccinate PHMG, for 
ophthalmic diseases, particularly conjunctivitis [38]; 
and stearate and myristate PHMG, for use as biocidal 
additives [39, 40]. In addition, PHMG can be used in 
combination with chitosan [41], since this combination 
has good biocidal activity against gram-positive 
bacteria.

According to the literature [42, 43], the salts of 
PHMG can be widely used in medicine and pharmacy. 
In particular, the oligomeric analogs of PHMG, namely 
oligoguanidines, are known for their biocidal activity 
and low toxicity.

Branched oligoguanidines have significantly lower 
toxicity and pronounced bactericidal and antiviral 
activities compared with polymer analogs with linear 
structures [44, 45]. This confirms their application 
potential as active ingredients in the development 
of antibacterial drugs. A well-known representative 
of oligoguanidines is oligohexamethylene guanidine 
hydrochloride (OHMG-HC), the structural formula of 
which is shown in Fig. 3.

PREPARATION OF POLYGUANIDINES 
AND THEIR DERIVATIVES

Polyguanidines and their derivatives are obtained 
mainly in bulk reactors under different conditions, e.g., 
by the interaction of melts of guanidine hydrochloride 
(GHC), formed, in turn, from dicyandiamine and 
ammonium chloride, and hexamethylenediamine 
(HMDA) at 180°C, followed by heating to 240°C [46]. 
The disadvantages of this method are the impurities 
introduced by the initial highly toxic substances and the 
sublimation of HMDA at high temperatures. Later, a 
method was proposed for obtaining these compounds at 
relatively low temperatures by the fusion of GHC and 
HMDA in the presence of polyethylene glycol (PEG) 
[47]. However, with this method, it was impossible to 
achieve the required degree of purity and activity of the 
product. Preparation methods involving the stepwise 
heating of a suspension obtained by adding crystalline 
GHC to molten HMDA, followed by stirring and 
heating, have been reported. Although these methods 
allow one to obtain the final product with a sufficient 
degree of purity, the compound obtained has a wide 
molecular weight distribution, which negatively affects 
its antibacterial properties [48]. A preparation method 
has been reported, in which pre-crushed dicyanamide 
and ammonium chloride are fused at 200°C in the first 
stage, after which the melt is transferred to the second 
reactor, where the HMDA melt is gradually introduced 
at temperatures of 170–200°C. The disadvantage 
of this method is the presence of melamine in the 
product, which is formed by the thermal transformation 

Fig. 3. Structural formula of branched OHMG-HC.
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of dicyandiamide [49]. A synthesis method using 
equimolar amounts of HMDA and GHC has also 
been reported. Using this method, various derivatives 
with trilinear and cyclic or branched structures can be 
obtained (Fig. 4).

The main disadvantage of this method is the large 
number of products, which complicates the isolation of 
any particular compound.

Branched oligomers are obtained by the interaction 
of HMDA and GHC in the melt, in molar ratios of 
1.0:1.0 to 1.0:1.2, at temperatures of 180–230°C, with 
a residence time in the range of 3–12 h [45].

In general, the existing methods for the synthesis 
of polyguanidines and their derivatives in bulk reactors 
have several disadvantages. In such methods, the heat- 
and mass-transfer rates are inadequate. This induces 
temperature and concentration anisotropies, which 
subsequently affect the molecular weight characteristics 
of the compound. Furthermore, large-volume reactors 
require a more sophisticated design to ensure explosion 
and fire safety, which leads to an increase in the process 
cost and the cost of the final product. Alternatively, one 
can consider the production of polyguanidines and their 
derivatives using microfluidic hardware.

MICROREACTOR TECHNOLOGIES

Historical development of microreactor technology
The first solid publications on the possibilities 

of using microfluidic technologies appeared in the 
second half of the 20th century. Among others, it is 
possible to highlight the manufacture and testing of 

Fig. 4. Polyguanidine derivatives formed during synthesis: 
A, B, C (linear); D (branching); E, F (cyclic); G (cyclic branching).

a gas chromatograph based on a microcircuit [50] 
and research carried out in the field of miniature 
analytical systems, which aroused the greatest interest 
in this area of technology [51]. The development 
became possible thanks to advances in the field of 
microelectronics, which became the prototypes of 
future microreactors.

A great contribution to the study of microfluidic 
technologies was made by the staff of the Massachusetts 
Institute of Technology (USA), as well as by scientists 
from the Mainz Institute of Microtechnology 
(Fraunhofer Institute for Microtechnology and 
Microsystems) (Germany) [52, 53].

Currently, microfluidic technologies are actively 
developing, the possibility of their implementation in 
the production of various substances and compounds is 
under discussion.

Technological principles of microreactor 
hardware operation

Microfluidics includes devices, systems, and 
methods for controlling fluid flows with characteristic 
length scales that are in the range of micrometers, and 
reaction volumes are in the range from nanoliter to 
microliter [54]. Microfluidic systems exhibit properties 
that are fundamentally different from generally known 
concepts of the behavior of liquids. Fluid flow will be 
driven by viscous forces and pressure gradients with 
low moment of inertia and thus inertial effects. The 
result is a laminar flow without turbulence. One of 
the parameters is the Reynolds number (Re), which is 
the ratio of inertial forces to viscous forces. At large 
Re, inertial forces prevail, and at small Re, viscosity 
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forces prevail. Consequently, a decrease in the channel 
size has the same effect on the behavior of the liquid 
in terms of Re as an increase in the viscosity of the 
solution. In most microfluidic systems, the Re value 
for fluxes is much less than ten, and often less than 
one. With such a laminar fluid flow, the velocity at the 
center of the capillary is greater than at its walls due 
to the parabolic velocity profile [55], which leads to a 
nonuniform velocity distribution over the fluid flow. 
This adjusts, for example, the dwell time is distributed, 
which can reduce the yield and selectivity. However, 
the undeniable advantage is the absence of gradients of 
both concentration and temperature relative to volume 
and time.

It is also worth noting the high surface-to-volume 
ratio and small diffusion distances, which leads to a 
reduction in the diffusion time of particles, an increase 
in conversion, and the overall efficiency of the process 
[56]. One of the consequences of laminar flow is the fact 
that the mixing of molecules in a liquid is solely due to 
molecular diffusion. This can be a significant advantage 
when mixing in a particular process is undesirable. 
Diffusion plays an important role in the processes 
of mass transfer; in microreactor technologies, the 
diffusion distance is small.

The difference in the physical behavior of 
microscopic and macroscopic systems makes it possible 
to create functions that are difficult or even impossible to 
obtain on a macroscopic scale; therefore, it is necessary 
to strive for the development of microfluidic systems, 
proceeding from the design rules, considering the 
peculiarities of fluid physics, mechanics and diffusion 
in a confined space [57]. 

The advantage of using microreactor devices is 
associated with thermal processes and mass transfer. 
The large surface area to volume ratio ensures thermal 
uniformity in the reactor and fast heat transfer between 
the device and the liquid contained in it, which 
determines the high energy efficiency of the process 
[58]. Microreactor technologies make it possible 
to adjust the process temperature in a shorter time 
compared to bulk reactors. It should be noted that the 
use of microreactor technologies has a special economic 
advantage, since small volumes of expensive reagents 
are used, since the work is carried out with a minimum 
amount of substance [59].

Microfluidic reactors have intrinsic properties that 
enhance the safety of potentially hazardous reactions. 
Small instantaneous volumes mean that reactions 
involving toxic or explosive intermediates can be 
carried out safely [60]. In addition, the high surface 
area to volume ratio inside the channel allows rapid 
heat transfer during exothermic reactions [59].

In microreactors, the degree of control over the 
conditions allows the product to be selectively produced 

with high accuracy [61]. This has several advantages: 
cleaning can be less stringent, more technologically 
simpler. During the synthesis, the reagents are 
continuously fed into the microreactor, and at the end 
of the process they are immediately separated from the 
initial mixture, which makes it possible to simplify 
the process itself, less time is required for the reaction 
to proceed, and more accurate process control can be 
provided. 

As mentioned earlier, heat transfer in microfluidic 
reactors becomes more efficient as the reaction volumes 
decrease, that is, the amount of energy consumed to 
raise the temperature by one degree can be made very 
small, which is beneficial from an environmental point 
of view [59].

It is often claimed that microfluidic reactors allow 
“faster reactions” than bulk reactor reactions. It is noted 
that the product yield in microfluidic reactors is higher 
than in similar processes using bulk reactors [62].

An important advantage is that when glass or 
polymer parts are used, the uncontrolled decomposition 
of reaction mixtures at the reaction temperature is 
leveled [63]. 

Application of microreactor technologies 
in the chemical industry

Currently, microreactor technologies find their 
application in fine chemical technology, the synthesis 
of organic, inorganic and polymer particles, pigments, 
emulsions, in steam reforming. Since microfluidic 
reactors can be used in organic chemistry, they must 
be resistant to the action of various solvents, acids, 
bases, oxidants and reducing agents. It is important 
to maintain performance between −78 and 300°C. 
It should also be possible to carry out the initial 
purification of the reaction, for example, by extraction 
[59]. Thus, microreactors are actively used in carrying 
out a wide variety of reactions in compliance with all the 
above requirements, for example, in high-temperature 
processes, reactions with unstable intermediates that 
are difficult to scale with traditional synthesis methods, 
and reactions involving hazardous or toxic reagents, 
which in turn can be converted into a safer product [64]. 
In [59] it was indicated that microreactors are used in 
glycosylation reactions, Paal–Knorr synthesis, and for 
fluorination and perfluorination of organic compounds. 
The use of microfluidic reactors for multiphase 
processes [65] gives clear advantages over traditional 
methods (higher surface area to volume ratio).

Microfluidic technologies are also actively used 
to carry out various types of polymerization. In all 
examples of using microreactor technologies for 
carrying out polymerization reactions, a decrease in the 
polydispersity coefficient and an increase in yield are 
noted due to efficient heat transfer and a larger specific 
surface area. These advantages make it possible to 
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achieve a homogeneous chemical process and, as a 
result, to increase the homogeneity of the product. 
In [65], the product obtained in a microreactor had a 
lower viscosity compared to the product obtained in an 
ordinary batch reactor, while their other characteristics 
are comparable. In [67, 68], the polymers obtained 
in a microreactor tended to be branching, which was 
explained by the short diffusion path and the accelerated 
mass transfer during this. Another example illustrates 
how microfluidic devices can be used with aqueous 
solutions and with melts. As a result, a high selectivity 
of the process was achieved along with a low content 
of impurities [69].

Industrial research has led to the development of 
methods aimed at creating reliable microfluidic reactors 
with production facilities on an industrial scale. One of 
the important advantages of microfluidic reactors over 
traditional manufacturing methods is the ease of scaling 
up. Any microreactor can be used both for laboratory 
research and for industrial production [70]. The use 
of microfluidic reactors could also open new synthetic 
pathways for industry.

Microfluidic hardware in drug development 
and manufacturing

Microreactors have become more and more 
important over time in the pharmaceutical formulation 
industry due to their improved properties over batch 
reactors. It has been suggested [71] that chemicals, 
especially drugs, could be produced in miniature 
factories at points of use rather than in large factories. 

Over the past few years, drip microfluidic 
systems have been widely used in drug discovery 
research. Microfluidic technologies enable very high 
throughput analyzes (up to thousands of samples per 
second). Drug screening, high-throughput analysis is 
one of the most exciting possibilities of microfluidic 
technology.

The use of microfluidic systems as a valuable 
tool for the discovery of new drugs is of great 
interest. Compared to equivalent bulk reactions, 
reactions carried out in a microreactor consistently 
give cleaner products in a much shorter time. Roberge 
et al. [72] believe that up to 50% of reactions in 
the fine chemical or pharmaceutical industries can 
benefit from a continuous process based mainly on 
microreactor technology, and for the majority (44%) 
a microreactor will be the preferred reaction device. 
After optimization of the microreactor, it can be 
easily introduced into industry [73].

Many large pharmaceutical companies, including 
Roche and Pfizer (USA), are investing in capillary 
microfluidic technologies for drug development. 
RainDance Technologies (Billerica, MA, USA) has 
developed commercial drip microfluidic systems that 
enable targeted DNA sequencing and digital PCR. 

They announced a collaboration with Roche for a 
simple and cost-effective study of drug absorption, 
distribution, metabolism and excretion [74].

Microreactors are used in the synthesis of various 
drugs, for example, ibuprofen [75, 76] or an HIV 
protease inhibitor [77]. Using microfluidic technology, 
an antitumor drug docetaxel with an increased content 
of a hydrophobic active substance with optimal 
physicochemical characteristics is obtained [78]. 

Directions for the development 
of microfluidic technologies

The field of microfluidics is evolving and, until 
recently, was largely technology-driven. The focus 
was on the development of new functional components 
(pumps, valves, and new economical production 
technologies), as well as their functional demonstration. 
A wide range of components and manufacturing 
technologies are currently available, and while new 
technologies are emerging at a rapid pace, the focus 
in the future is likely to shift toward implementation, 
i.e., existing technologies will be transformed for new 
applications. Undoubtedly, microfluidics will play a 
critical role in the drug discovery process to develop 
drugs with ever-improving quality [57].

CONCLUSIONS

The fight against the resistance of pathogenic 
microflora to antibiotics requires special measures. 
One strategy involves reducing the use frequency of 
antibiotics and replacing them with antiseptic drugs 
everywhere. Antiseptics, as a rule, are obtained using 
volumetric reactors, which have drawbacks that affect 
the quality of the target compound. Microreactor 
technologies, considering their many advantages, are 
considered suitable alternatives. This article describes 
the advantages of microreactor systems over volumetric 
reactors and testifies to the expediency of their 
application in polycondensation and polymerization 
reactions. Thus, it can be concluded that microreactor 
technologies are applicable in the synthesis of 
promising polyguanidines and their derivatives. The 
proposed method allows for more accurate control 
of the conditions of the polycondensation reaction 
of the starting monomers. In addition, microreactor 
technologies can increase the yield and selectivity of 
the oligomers obtained, leading to an increase in the 
product purity and process efficiency, in contrast with 
other known methods.
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