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Abstract

Objectives. The objectives of this work are the development of a multi-primer system based
on the polymerase chain reaction (PCR) aimed at the simultaneous detection of six bacterial
pathogens that cause human pneumonia and the determination of the parameters important
for the optimization of this multi-primer system, including solid-phase PCR systems (biological
microarrays).

Methods. To determine the optimal parameters of the system, PCR methods were used in
monoplex and multiplex formats.

Results. Primers for Staphylococcus aureus, Pseudomonas aeruginosa, Haemophilus influenza,
Legionella pneumophila, Klebsiella pneumoniae, and Streptococcus pneumoniae detection were
designed, and the PCR cycling conditions were optimized. The patterns of primer design for solid-
phase PCR were revealed.

Conclusions. The developed prototype of a system specifically identifies six clinically significant
bacterial pathogens. It could be expanded for the analysis of viral and fungal pathogens and used
in clinical diagnostics. A prototype of a system for pathogenic agent detection in the immobilized
phase (biological microarray) was created.
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HAYYHAS CTATbSA

Oco0enHocTH onTUMHU3ANMU MyJabTUNIpaumMepHoii ITI[P
JJIS. BbISIBJICHUS BO30ynuTe el NHPEeKIMOHHON THEBMOHUHU
Yyesa0BeKa

E.C. Knounxuna?, B.E. IllepmioB, B.E. Kysneunona, C.A. Aana, A.B. YyauHoB

Hnemumym monexynsipHoti buonozuu um. B.A. DHzenveapoma Pocculickoli akademuu HAYK,
Mockea, 119991 Poccus
@ Aemop ona nepenucku, e-mail: arctickate@yandex.ru

AHHOMAyus

Ienu. Paspabomika mMyasmunpaiimMepHoli cucmemsl Ha 0OCHO8E NOAUMEPA3HOU UenHoU peaKyuu
(TILIP), HanpaeneHHOU HA 00HO8PEMEHHOE 8blsi8leHuUe ULeCMU OCHO8HbLX baKmepuaibHblX 8030Y-
Jumesielli NHEBMOHUU UEI08EKA,; 8blI8EHUE NAPAMEMPO8 U 3AKKOHOMEepHOCMEN, UMEIOULUX 8AXNC-
Hoe 3HaueHue 011 ONMUMUSAUUU MYJbMUNPATUMEPHOU cucmembl, 8 mom uucae 01 paspabom-
rKu cucmem ITLP 8 ummobunuzo8aHHoll gpaze (Ha buosioeuuecikom muKpouune).

Memooul. /[ onpedeneHuss OnNMUMAIbHBIX NAPAMEmpo8 Cucmembl UCNO/Ib308ANU Memodbl
IIIIP 8 mM.H. «<MOHONNEKCHOM» U MYJbMUNIEKCHOM (POPMAMAX.

Pesynemamut. CkoHcmpyupogaHsl npaiimepsl, U ONMUMUIUPOSAH MeMNnepamypHO-epemeH-
Holl npoghunb nposederust I1L[P e obveme ons svisasaerus Staphylococcus aureus, Pseudomonas
aeruginosa, Haemophilus influenza, Legionella pneumophila, Klebsiella pneumoniae u
Streptococcus pneumoniae. BolsieieHbl 3aKOHOMEPHOCMU KOHCMPYUPOBAHUSL Npalimepos Oss
III[P & ummobunuzoeaHHoll gpase.

Bbleooul. H3yueHHble 3aKOHOMEPHOCMU 0CObeHHOCMel ONMUMUSAUUU MYJAbMUNPATUMEPHBLX
cucmem NO38ONUAU pa3pabomames NPOMOMUN CUCMEMbl, CNOCOOHOU CNeyuguUUHO 8blsiesisiMmb
wecmsv KAUHUUECKU 3HAUUMbLX 8030ydumesieli nHeemMoHUU uesiogeka. IIpomomun cucmemsbl MO-
JKem 6bimb pacuiuper 0t AHAIU3A BUPYCHBLX U 2pUDOKO8bLX NAMO2EH08 U NPUMEHSIMbCSL 8 KIU-
Huueckoll duazHocmuke. Pesynomamul usyuerus ocoberHocmeii myasmunaerxcHoti ITL[P 8 ummo-
6unuz08aHHOU haze npuseau K co30aHUI0 NPOMOMUNA CUCMeMbl 0151 8blsI8NEeHUSL NAMO2EHHbLX
azeHmo8 Ha 6U002UUECKOM MUKPOUUNE.

Knroueevle cnoea: uHpeKyUOHHAS NHEBMOHUSL, MyabmunaekcHas I[P, 6uouunst, COVID-19

Jna yumuposanus: Knounxuna E.C., llepmos B.E., Ky3nenosa B.E., Jlana C.A., YUynuaos A.B. Ocobennoctu

onTuMH3anuu Mynbrunpaiimeprnoi TTLP aist BeisiBiIeHUS BO30ynuTeseil HHPEKIIMOHHON MHEBMOHUM 4ejoBeka. ToHKue
xumuueckue mexvonoauu. 2021;16(3):225-231. https://doi.org/10.32362/2410-6593-2021-16-3-225-231

The term “infectious pneumonia” covers a

INTRODUCTION the context of the COVID-19 pandemic, when, in
addition to a viral disease, patients entering medical

institutions are faced with secondary nosocomial

spectrum of diseases of the respiratory system that
differ in etiology and pathogenesis [1]. Accurate and
timely identification of the causative agent of the
lesion is important for the development of successful
treatment regimens [2], as well as for the control of
the infection. This has become an urgent problem in

infections [3].

To identify the causative agents of pneumonia,
which can be viruses, bacteria, or fungi, possible
standard methods can be used for etiological
diagnosis, for example, inoculation. This is often
inconvenient due to the limitations of working
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with biological samples, as well as the lengthy and
laborious work involved in cultivation, isolation,
and further determination of the pathogenic agents
[4, 5]. For these reasons, more accurate and faster
identification is often required for correct treatment [6].

Currently, molecular genetic methods of analysis,
such as the polymerase chain reaction (PCR) variations,
are becoming more widespread. Their application
is favorably notable for relative ease, accuracy, and
sensitivity of the results, as well as speed [4], which is
important for treating diseases with a highly dynamic
pathological development process.

This work is devoted to the development and
optimization of PCR for the simultaneous detection
of six bacterial pathogens of human pneumonia:
Staphylococcus aureus, Pseudomonas aeruginosa,
Haemophilus influenza, Legionella pneumophila,
Klebsiella ~ pneumoniae, and Streptococcus
pneumoniae. In the described approach, regions
of marker genes of pathogens were amplified in
one common volume, the resulting products being
separated by the electrophoretic method. The lengths
of the detected amplified fragments were used to
identify the specific pathogen.

Using the developed system as an example,
important features for the optimization of multi-
primer PCR are described, including those for use in
the immobilized phase.

EXPERIMENTAL

Strains

We wused the decontaminated genome-wide
DNA of bacterial strains from the collection of the
State Scientific Center for Applied Microbiology
and Biotechnology (Obolensk, Serpukhov, Moscow
oblast, Russia). DNA isolation from the cell cultures
was completed using the cetyltrimethylammonium
bromide method [7].

Primers

Multiple alignment of the genomic target
sequences was performed using the ClustalW!
algorithm. The primers were designed using the
Integrated DNA Technologies? network resource, and
the specificity analysis was performed using the basic
local alignment search tool (BLAST)® algorithm
(National Institutes of Health, USA). The sequences,
species specificities, genetic targets, and lengths of
the PCR products for all of the primer pairs used are
shown below:

! Clustal: Multiple Sequence Alignment. URL: www.clustal.
org (accessed December 15, 2020).

2 Integrated DNA Technologies. URL: www.idtdna.com
(accessed December 17, 2020).

3 Basic Local Alignment Search Tool. URL: https://blast.ncbi.
nlm.nih.gov/Blast.cgi (accessed December 15, 2020)

S. aureus, ebpS gene, direct ebpS-f
(5’-ACTCGACTGAGGATAAAGCGTCT-3"), reverse
ebpS-r (5’-CCTCCAAATATCGCTAATGCACC-3),
PCR product length: 283 base pairs (bp), nested reverse
R1 (5’-NH,-CCTCCAAATATCGCTAATGCACC-3’),
R2 (5-NH,-GGTAACAATACTTTGGCCATGCCACC-3),
nested direct F1(5’-CTGCCGCTTCAAAACCACATGCC-3),
F2 (5°>-AAAAGGTGGCATGGCCAAAGT-3"),
F3 (5’-AGCAAGTAATAGTGCTTCTGCCG-3").

S. pneumonia, cpsB gene, direct cpsB-f1
(5’-TTGATGTAGATGACGGTCCCAAG-3’), reverse
cpsB-rl  (5’-TATATCTCTGCGCCATAAGCAAT-3"),
PCR product length: 217 bp, nested reverse
R3  (5’-NH,-TATATCTCTGCGCCATAAGCAAT-3’),
R4 (5’-NH,-CGAACCTGAAGAAAGTTTTCTG-3’),
R5 (5-NH,-GCAATGACTAAATCATCTGCCAC-3’),
nested direct F4 (5-GCGAACCATTGTCTCTACCTCTC-3’),
F5 (5’-TCTACCTCTCACCGTCGCAAGGG-3’),
F6 (5-TGGCAGAATCCTACAGGCAGG-3’).

L. pneumophila, sidA gene, direct sidA-f
(5’-TTCCACTGGTGGGTGGGGTTTTG-3"), reverse
sidA-r  (5-TCATGTTGGAGTTCTATGGCACG-3),
PCR product length: 369 bp.

H. influenza, tfucK gene, direct fucK-f
(5’-TGCTCACTCAACGCTTAACTGGT-3"), reverse
fucK-r  (5-TTCTGGGCTAATGGTGTACGTAA-3),
PCR product length: 193 bp.

P. aeruginosa, oprL gene, direct oprL-f
(5’-GCGTGCGATCACCACCTTCTACT-3"), reverse
oprL-r  (5’-TTCTTCAGCTCGACGCGACGGTT-3"),
PCR product length: 321 bp.

K. pneumonia, rmpA gene, direct rmpA-f
(5’-ATCAATAGCAATTAAGCACAAAA-3’), reverse
rmpA-r  (5-TCATAATCACACCCTTTAGGATA-3’),
PCR product length: 177 bp.

Multiplex PCR

The reaction mixture (30 pL) contained 1.5
units of Taq polymerase (Thermo Scientific,
United States) in the buffer produced by the same
company, dNTP at a concentration of 200 uM each,
five pairs of specific primers, and a genome-wide
bacterial template (or a mixture of bacterial DNA).
The reaction was carried out in a MiniCycler DNA
amplifier (MJResearch, USA) under the following
conditions: 95°C for 5 min (initial denaturation),
30 cycles of 20 s at 95°C, 30 s at 66°C, and 30 s
at 72°C; the final incubation was 5 min at 72°C.
Gradient PCR and determination of the system
sensitivity using real-time PCR were performed
in an 1Q5 amplifier (Bio-Rad, USA). The PCR
products were separated in 4% agarose gel and
colored with ethidium bromide. The lengths of the
amplification products in ultraviolet light were
used to determine the type of analyzed DNA.
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Fig. 1. Electropherograms of PCR products of gradient PCR. L — GeneRuler 50bp length marker
(Thermo Scientific, USA). 4% agarose gel, coloring with ethidium bromide.
(a) S. aureus. Primers annealing temperatures: Well 1: 65.0°C, Well 2: 65.6°C, Well 3: 66.5°C, Well 4: 67.7°C,
Well 5: 69.5°C, Well 6: 70.8°C, Well 7: 71.7°C, Well 8: 72.0°C, Well 9: negative control;
(b) L. pneumophila. Primers annealing temperatures: Well 1: 57.0°C, Well 2: 58.2°C, Well 3: 60.0°C, Well 4: 62.7°C,
Well 5: 66.5°C, Well 6: 69.3°C, Well 7: 71.0°C, Well 8: 72.0°C, Well 9: negative control.

RESULTS AND DISCUSSION

Genetic targets were selected for the six most
important causative agents of pneumonia, and primers
were designed for multiplex PCR [8-16].

We were guided by the general requirements
when designing the primer sequences: species
specificity and intraspecific conservatism of the
selected regions of the genetic targets. The primer
annealing sites were manually selected. Additionally,
the need to obtain different lengths of PCR products
for the convenient subsequent detection of pathogens
by electrophoretic separation was taken into account.
The physicochemical characteristics were determined
for each oligonucleotide sequence; a BLAST analysis
was then performed and examined for the formation
of dimers, hairpins, and other secondary structures.

The initial amplification conditions for
subsequent optimization were chosen as follows:
denaturation at 95°C and 30 cycles of 20 s at 95°C,
30 s at 57°C, and 30 s at 72°C. For the pathogens
S. aureus and L. pneumophila, gradient “monoplex”
PCRs were performed. The results revealed that the
annealing temperature of the latter was increased to
66°C (Fig. 1).

In a new temperature—time cycle, monoplex
PCR variants were carried out for the remaining
four pathogens. The primer effects were checked,
comparing the lengths of the PCR products with the
theoretical ones. Then, in the mode of a mixture of
the DNA templates (Fig. 2) of several pathogens,
their specificity and ability to detect only their
pathogens without providing false-positive results
were confirmed.

The result of differential detection of a pathogen’s
DNA in a sample by multiplex PCR is shown in Fig. 3.

Fig. 2. Electrophoretic separation of PCR products
by multiplex PCR with a mixture of primers.

(1) GeneRuler 50bp length marker (Thermo Sientific, USA),
(2) S. aureus, (3) L. pneumophila, (4) H. influenzae,
(5) P, aeruginosa, (6) S. pneumoniae,

(7) L. pneumophila + S pneumoniae,

(8) S. pneumoniae + H. Influenzae + S. aureus.

The PCR products were separated in 4% agarose gel and
colored with ethidium bromide.

In the cases of S. aureus and S. pneumoniae, specific
primers were designed for subsequent immobilization
on a biochip incorporating fluorescently labeled
nucleotides into the immobilized growing chain.
The above principles were also used in this work.
The high sensitivity of the primers designed for
immobilization was confirmed by volumetric PCR
undertaken under the conditions of the previously
found optimal temperature—time profile. The results
of the monoplex PCRs in volume for S. aureus and
S. pneumoniae are shown in Figs. 4 and 5. It can be seen
from the pherograms that the lengths of the PCR
products obtained using various combinations of
primers were in good agreement with the theoretical
ones.

When analyzing the pherograms, primers showing
insufficient sensitivity or specificity were re-analyzed
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Fig. 3. Determination of the pathogen DNA by electrophoretic separation of PCR products.
L — GeneRuler 50bp length marker (7Thermo Scientific, USA), (1) S. pneumoniae, (2) S. aureus, (3) L. pneumophila,
(4) S. aureus + L. pneumophila, (5) H. influenzae, (6) P. aeruginosa, (7) H. influenzae + P. aeruginosa,
(8) K. pneumoniae. The PCR products were separated in 4% agarose gel and colored with ethidium bromide.

500 bp —»
250 bp—

Fig. 4. Electrophoretic separation of S. aureus PCR products.
(1) GeneRuler 50bp length marker (7hermo Sientific, USA),
(2) R1 + F1 (163 base pairs (bp)), (3) R1 + F2 (78 bp),
(4) R1 +F3 (180 bp), (5) R2 + F1 (115 bp),

(6) R2+F2 (30 bp), (7) R2 + F3 (132 bp).

The letters “R” and “F” indicate the numerical indexes
used to designate various primers. The theoretical length of
the corresponding PCR product is indicated in parentheses.

1 2 3456 7 8 910

500 bp — =
250 bp

Fig. 5. Electrophoretic separation of PCR products of
S. pneumoniae. (1) GeneRuler 50bp length marker
(Thermo Sientific, USA); (2) R3 + F4 (144 bp);

(3) R3 +F5 (131 bp); (4) R3 + F6 (169 bp);

(5) R4 + F4 (87 bp); (6) R4 + F5 (74 bp);

(7) R4 + F6 (112 bp); (8) RS + F4 (126 bp);

(9) RS+ F5 (113 bp); (10) R5 + F6 (151 bp). The letters
“R” and “F” indicate the numerical indexes used to
designate various primers. The theoretical length of the
corresponding PCR product is indicated in parentheses.
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