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Abstract

Objectives. The purpose of this analytical review is to evaluate the market for osteoplastic
materials and surgical implants, as well as study the features of new-generation materials and
the results of clinical applications.

Methods. This review summarizes the volumes of research articles presented in the electronic
database PubMed and eLIBRARY. A total of 129 scientific articles related to biological systems,
calcium phosphate, polymer, and biocomposite matrices as carriers of pharmaceutical substances,
primary recombinant protein osteoinductors, antibiotics, and biologically active chemical reagents
were analyzed and summarized. The search depth was 10 years.

Results. Demineralized bone matrix constitutes 26% of all types of osteoplastic matrices used
globally in surgical osteology, which includes neurosurgery, traumatology and orthopedics,
dentistry, and maxillofacial and pediatric surgery. Among the matrices, polymer and biocomposite
matrices are outstanding. Special attention is paid to the possibility of immobilizing osteogenic
factors and target pharmaceutical substances on the scaffold material to achieve controlled and
prolonged release at the site of surgical implantation. Polymeric and biocomposite materials can
retard the release of pharmaceutical substances at the implantation site, promoting a decrease in
the toxicity and an improvement in the therapeutic effect. The use of composite scaffolds of different
compositions in vivo results in high osteogenesis, promotes the initialization of biomineralization,
and enables the tuning of the degradation rate of the material.
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Conclusions. Osteoplastic materials of various compositions in combination with drugs showed
accelerated regeneration and mineralization of bone tissue in vivo, excluding systemic side
reactions. Furthermore, although some materials have already been registered as commercial
drugs, a plethora of unresolved problems remain. Due to the limited clinical studies of materials
for use on humans, there is still an insufficient understanding of the toxicity of materials, time
of their resorption, speed of drug delivery, and the possible long-term adverse effects of using
implants of different compositions.

Keywords: osteosynthesis, osteoplastic materials, regenerative medicine, tissue engineering,
osteogenesis, chondrogenesis, recombinant osteoinducers

For citation: Lykoshin D.D., Zaitsev V.V., Kostromina M.A., Esipov R.S. New-generation osteoplastic materials
based on biological and synthetic matrices. Tonk. Khim. Tekhnol. = Fine Chem. Technol. 2021;16(1):36—54 (Russ., Eng.).
https://doi.org/10.32362/2410-6593-2021-16-1-36-54

OB30OPHAMS CTATbHA

OcTeomacTuyeckKue MaTepHuaJibl HOBOI'O IIOKOJCHUHA
HA OCHOBEe OMOJIOTMYECKHUX U CHHTETHYECKHX MAaTPHUKCOB

O.O. Asikomrua'“, B.B. 3aiines?, M.A. Kocrpomunal, P.C. Ecunos’

IHHcmumym 6uoopeaHuveckoll xumuu um. arxademurxos M.M. [llemsxkura u FO.A. OsuuHHuKo8a,
Pocculickas akademust Hayk, Mockea, 117997 Poccus

?HayuoHanbHblli MeOUYUHCKUTL UCCe008aMeNnbCKUll UeHmp mpasmamosioeu.. U opmoneouu
um. H.H. IIpuoposa, Munucmepcmeo 30pasooxpaHeHus Pocculickoii Pedepayuu, Mockesa,
127299 Poccus

@Aemop ons nepenucku, e-mail: ldd-94@yandex.ru

AHHOMauus

Ienu. Llenv aumepamypHo2o 0630pa — AHANU3 OCMEONNACMUUECKUX MAMEePUaios u Xupypau-
YecKux UMNIAHmMamo8 H08020 NOKOJIeHUsl, UsyueHue ocobeHHocmetl, xapaKkmepucmurx U pesysib-
mamoe ux KAUHUUeCKo20 NPpUMeHeHUSL.

Memoowl. 0630p cymmupyem obbem HaAYUHO-UCCAE008AMENbCKUX MAMEPUALO8, NPEeOCMA8AeH-
Hoblx Ha nopmanax «PubMed» u «LIBRARY». IIpoaranusuposaHr u obobuern mamepuan 129 nayu-
HblX cmamell no cnedyrouwum pazdenam: buonozuueckue, Kanbyuli-gpoccpammnle, noaumepHsle U
buoKomnosumMHsle MAMPUKCbL 8 Kauecmee HocumeJiell yesiesolx hapmayesmuueckux cybcma-
yuill (peKomouHaHmHslx 6esKo8blx ocmeouHOyKmopos, aHmubuomurxos u buosiozuuecku aKmue-
HbLX Xxumuueckux peazeHnmos). I'nybura noucka 10 nem.

Pesynomameut. Cpedu 8cex 8u008 0CMEonIacmuieckux MampuKcos, npumeHsiemblx 8 Hacmo-
saujee epems 8 MUPOB8OUl Xupypuueckoli ocmeosozul, Kyoa exooum Helupoxupypaus, mpasma-
mosioeust U opmoneoust, CmMoOMAMOJ02Usl, UeSIOCMHO-IUYesast U 0emcKast xupypaus, oemure-
panuzosarHbslil kKocmHblii mampurce (IKM) saHumaem 26%. IlonumepHole u 6buokomnosumHole
MAMPUKCLL ce200HsT npedcmassisiiomest Haubosiee nepcneKmusHbulMU MAMepuaiamu 8 cpasHe-
Huu ¢ JAKM. Ocoboe sHumaHue 8 paspabomire HO8blX 8UO08 MAMPUKCO8 YOess1emcest 803MOIKHO-
cmu puKcayuu 0cmeozeHHbLX PaKmopos U yesesslx gapmayesmuueckux cybecmaHyuii Ha ma-
mepuasne-HocumeJse ¢ yeansto UxX KOHMpOoAUpPYemozo U nposoH2UPO8AHHO20 8bNYCKA HA yuacmke
xupypeuueckoll. umniarnmayuu. IlonumepHole U 6UOKOMNOZUMHbBLE MAMEPUASbL CNOCOOHBL 3a-
Meldnsimb 8pemsi 8blc80b0rKOeHUs papmcybecmaHyuli 8 mecme UMNIAHMAUUU, CnOocobcmayst CHU-
JKEHUI0 MOKCUUHOCMU U NPOJIOH2AUUU MepanesmuuecKozo sagpgpexma, aesisico nepcneKmueHoll
anemepHamuegoll aymozeHHol kocmu. Hcnoaws3osaHue KOMNO3UMHbLX Hocumenel pasiuiHozo
cocmasa in vivo 0emMoHCmpupyem 8ulcokue noKasameau ocmeozeHes3a, cnocobecmasyem 3anycky
bUOMUHEePANUAYUU U NO3BOSSLeM 8APLUPOBAMb CKOPOCMb 0e2padayui Mamepuand.
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Boreodst. Ocmeonsiacmuueckue Mamepuasibl pasiuuHoz0 COCmMasga 6 COUeMAaHuUll C J1eKapCmeeH-
HbLMU cpedcmeami NOKA3alU YCKOPEeHUEe pezeHepayuu U MUHEPAAUIAUUU KOCMHOU MKAHU in
vivo, uckarouas cucmemHole nobourvle peakyuu. M, xoms HeKomopble mamepuasisl yxe sape-
2UCMPUPOBAHBL 8 KAUuecmee KOMMepueCKux npenapamos, ece eule COXpaHsemces. psi0 HepeuleH-
HblX npobrem. H3-3a 02pAHUUEHHOCMU KAUHUUECKUX UCC/e008AHUN MAMEPUAO8 HA 00X
0CMaAromest OmKpblMbIMU MaKue 80NpPocsbl. KAaK HedoCcmamouHoe NOHUMAHUE MOKCUUHOCMU
Mmamepuasios, epemeHu ux pe3opbyuu, ckopocmu 00CmaeKu 1eKapcmeeHH020 cpedcmasa U e2o
8bLC80O0IKOEHUSL, A MAKIKE 803MOIHblEe HebaazonpusimHble 3¢pheKmblL Om UCNObL308AHUSL UM-

nJiaHmamaos pasjiuiHoz20 cocmasa.

Knroueesle cnoea: ocmeocuHmes, ocmeoniacmuuecKue mamepuasiol, peezeHepamusHasi Mmeou-
yuHa, mraHesaslt UHKeHepust, ocmeozeHes, xoudpozeHes’, peKOM6LLHaHmeL€ ocmeouudyrcmopbt

Jna yumupoeanusa: Jvikomun J{.J1., 3aiiues B.B., Koctpomuna M.A., Ecunos P.C. Ocreomnnactuueckue MaTepuabl HO-
BOTO ITOKOJICHHUSI HA OCHOBE OMOJIOTMYECKUX U CHHTETUYECKUX MaTPUKCOB. ToHKue xumuyeckue mexvorozuu. 2021;16(1):36-54.
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Globally, ~2.2 million operations related to fractures
and post-traumatic bone defects are performed annually,
and this number is predicted to increase to 6 million by
2050 [1, 2]. In some cases, such as nonunion fractures of
critical sizes or bone augmentation in dental implantology,
the ability of the bone to self-regenerate is insufficient, and
guided tissue regeneration is required, particularly when
bone substitute materials are employed. The optimal
osteoplastic material should have the following main
biomedical characteristics:

— Biocompatibility: the material must interact with
the cellular component of the bone without causing a toxic
or immunological response.

— Osteoinduction: the ability of a material to
induce the migration and differentiation of the recipient
mesenchymal stem cells (MSCs) into osteoblasts and
chondrocytes, which are the main cells of bone and
cartilage tissue.

— Osteoconduction: the ability of the material to
act as a supporting structure for the germination of blood
vessels and structures of new tissue.

—  Controlled resorption with the formation of non-
toxic degradation products.

— Open bimodal porous structure (200-500 pm
pores for germination into the material of the bone cells
and vessels; micropores < 100 pum for interstitial fluids).

— The possibility of adhesion and chemical fixation
of pharmaceutical substances on the structures of the
carrier without reducing their activity.

— Preservation of biological characteristics during
storage for extended periods.

— Manufacturability of the manufacturing process
in commercial production [3-5].

In clinical regenerative medicine, the “gold
standard” is the use of autografts. Autogenous bone grafts
are osteoinductive, osteoconductive, and completely
histocompatible materials [6]. However, autografts
are limited to the amount of donor tissue available for
transplant. The need for additional surgical intervention

to harvest bone tissue, usually from the iliac crest, carries
the risk of the patient developing long-term postoperative
pain syndrome [4].

The limitations associated with obtaining autogenous
grafts can be overcome with allografts obtained from
other donors. Today, allografts constitute 25% of the
osteoplastic matrices used in surgical osteology [6]. In
the United States alone, ~1 million allogeneic matrices
are implanted annually [7]. Their main advantages over
autogenous implants are the unlimited donor material
and the ability to receive grafts of various shapes and
sizes [6]. However, the risk of transmission of bacterial
and viral infections is the main drawback of this material
[8]. Additionally, the limited osteoinductive capacity of
allografts is the main cause of recurrence or nonunion
of bone tissue, which occurs in 15-20% of cases [6].
Osteoinduction activation of allogeneic bone matrices
can be achieved by adding recombinant osteoinductive
proteins [9]. However, the fixing of recombinant bone
morphogenetic proteins (thBMPs) on an allogeneic
matrix results in uncontrolled excessive bone formation
that goes beyond the field of corrected pathology, which
is attributed to their uncontrolled release from the matrix
framework [10].

Modern technological solutions involve the use of
natural and synthetic polymers and calcium phosphates
and their derivatives, including in combination with
osteoinductive growth factors (Fig. 1). These materials
are considered the most promising for use in osteoplasty,
since they allow the setting of the required characteristics
at the stage of producing the implant [3].

Even though the demand for plastic materials and
surgical implants is expected to increase annually, the
development of a universal osteoplastic material that
could meet all the above requirements remains a major
challenge.

In this review, we consider the characteristics of
osteoplastic matrices that show potential in surgical
osteology use and their clinical use cases.
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Polymeric
scaffold

Undifferentiated
stem cell

Osteoinductive factors
Differentiating agents

Fig. 1. Tissue engineering approach to bone treatment: undifferentiated stem cells are seeded on a polymer scaffold
together with differentiating agents and growth factors, followed by implanting in vivo.

OSTEOPLASTIC MATRICES BASED
ON BIOCERAMICS

Ceramic materials based on calcium phosphates
have pronounced osteoconductive characteristics,
which result in increased local interaction with the
recipient’s bone in corrected pathology; additionally,
they are manufactured in block, granule, pasty, and
injectable forms [11]. Synthetic calcium phosphates
in a biological system, due to the metabolism of body
cells, break down into calcium and phosphorus ions,
which are further included in the structure of the
regenerated bone tissue [12].

Hydroxyapatite

The most well-known calcium phosphate
material is hydroxyapatite (HAP). It is the main
inorganic component of bone tissue and tooth enamel,
well absorbed by the human body, and widely used
in orthopedics, traumatology, and dentistry to correct
bone tissue defects [11].

The chemical formula of HAP is Ca (PO,) (OH),.
In the crystal lattice, HAP molecules are distinguished
by two structural frameworks. The first, the “apatite
channel,” is formed by OH™ groups located inside the
lattice, which is bound by columns of Ca** and PO,*
ions, while the “backbone,” which can accommodate
F~, CI', OH" and CO.” ions, can isomorphically
substitute PO,*~ groups [12, 13].

The HAP s electrically neutral; ithas a stable ionic
lattice and is a stable compound. However, depending
on the amount of calcium ions in the HAP structure,
it can carry both positive and negative charges [13].
Further, chemical instability is a major disadvantage
associated with using HAP in osteoplasty. The slow
and incomplete resorption of synthetic HAP limit the
formation of new bone tissue [14]. The resorption
of calcium phosphate materials depends on the Ca/P

molar ratio in their composition. The lower the Ca/P
ratio, the higher the rate of material resorption [15].

Due to the nonstoichiometric composition
of HAP and the possibility of performing anionic
or cationic substitutions in the crystal lattice, the
value of the Ca/P ratio in the HAP composition can
vary from 1.5 to 1.67 [12, 15]. The introduction of
substituent ions into the HAP structure induces the
distortion and deformation of the crystal lattice, which
subsequently leads to an increase in the solubility and
bioresorbability of the substituted HAP in comparison
with pure HAP [14].

HAP-based materials can be modified by a
covalent attachment of collagen to transfer and
deliver wvarious therapeutic agents (antibiotics,
growth factors), enabling their prolonged release at
the injury site [16]. The use of recombinant growth
factors of bone tissue, such as bone morphogenetic
proteins (BMP) immobilized on osteoplastic carriers,
allows for the highly efficient and rapid correction of
complex congenital and acquired pathologies of the
human musculoskeletal system [10].

Covalent crosslinking using (N-ethyl-N'-(3-
dimethylaminopropyl)carbodiimide) (EDC) hydro-
chloride and N-hydroxysuccinimide (NHS) hydro-
chloride is widely employed to obtain composite
materials with increased biocompatibility, a high
potential for cell differentiation [17], and increased
resistance to enzymatic degradation [18]. This
method allows one to obtain “zero-length” amide
crosslinks between carboxylic acid groups and amino
groups [19].

To modify the surface of HAP with collagen and
immobilize the recombinant growth factors on it, the
HAP is incubated in a solution of bovine serum albumin
(BSA) and collagen, in the presence of a mixture of
EDC/NHS reagents. Thereafter, the HAP-—collagen
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composite material is incubated in a solution with
recombinant bone morphogenetic protein 2 (thBMP-2)
[20]. The protein is adsorbed on the surface of the
carrier through non-covalent interactions [11, 20].
The reaction scheme for the modification of the HAP
surface and the immobilization of rhBMP-2 on it is
shown in Fig. 2.

Tricalcium phosphate

Another class of orthophosphate materials that
have found use in osteoplasty is tricalcium phosphates.
Materials based on tricalcium phosphate are
characterized by a higher rate of resorption compared
to the materials based on HAP [21]. They can also be
used as components of composite materials together
with HAP, which enables the control of the material
resorption rate [22].

The osteoplastic matrix based on -tricalcium
phosphate (B-TCP) has received considerable attention
in scientific clinical studies. B-TCP, with the chemical
composition of Ca,(PO,),, unlike other polymorphic
modifications of tricalcium phosphates, is stable at
temperatures below 1100°C, and it has a lower Ca/P ratio
than that of HAP; consequently, it exhibits increased
biodegradability and biocompatibility [23].

To obtain an osteoplastic material based on B-TCP,
a suspension of crystalline hydrate (CaHPO,-H,O) and
calcium carbonate (CaCO,) is mixed in the presence
of zirconium dioxide (ZrO,), dried, and subsequently
calcined at 750-900°C, at which point HAP is converted into
B-TCP. After sintering the preformed B-TCP at 1050°C for
1 h, a B-TCP block with a porosity of 75% is formed
[24, 25]. The chemical reactions are described by Egs. 1 and 2.

4CaCO, + 6CaHPO, x H,0 — Ca, (PO,)(OH), + 8H,0 + 4CO,1 (¢ =750-900°C) (1)

Ca, (PO,),(OH), — 2Ca,(PO,), + Ca,P,0, + H,0 (¢ < 1050°C) @)

Free amine group

Amine crosslink

Q Bovine serum albumin (BSA)

™\, Collagen fibers
© rhBMP-2

Fig. 2. Illustration of the reaction mechanism of BSA and collagen chemical crosslinking for the subsequent
immobilization of the hBMP-2 osteoinducer on a hydroxyapatite matrix;
EDC: 1-ethyl-3(3-dimethylaminopropyl)carbodiimide hydrochloride, NHS: N-hydroxysuccinimide.
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Another common approach to obtain matrices
from B-TCP involves calcining chemically synthesized
calcium-deficient HAP. At temperatures of 700—800°C,
it loses water and transforms into the low-temperature
polymorph, B-TCP, used in osteoplasty (Eq. 3).
Further heating to a temperature of ~1150°C leads to
the transformation of B-TCP to a high-temperature
polymorphic 0-Ca,(PO,), material, which is highly
soluble in water [26].

Ca,(HPO,)(PO,).0H — 3Ca,(PO,), + H,O1 (r=700-800°C) (3)

The B-TCP structure allows one to perform
isomorphic substitutions of calcium ions for ions
of monovalent and divalent metals or silicate ions.
Silicate ions in the PB-TCP structure accelerate
the differentiation of MSCs on the matrix at the
implantation site [27]. Zn, Cu, and Ag metals impart
antibacterial properties on the B-TCP based material.
Additionally, the B-TCP matrix substituted with Zn
ions retards the formation of osteoclasts (cells that
destroy bone tissue) on its surface and accelerates the
work of osteoblasts, contributing to the formation of
the bone matrix [28].

Inclinical usage, B-TCP has already demonstrated
complete regeneration of bone defects over several
years and replacement of the osteoplastic matrix with
newly formed tissue. The partial resorption of the
B-TCP implant in a clinical setting is observed 2—3
weeks after surgery, and complete degradation occurs
from 1.5 to 5 years, depending on the patient’s age.
It was noted that in cancellous bone defects, -TCP
resorption and bone formation occurs faster than the
in the case of cortical bone defects [24].

Notably, materials based on calcium phosphates
have low tensile strength, and their Young’s modulus
is, on average, 10 times higher than that of bone
tissue [3]. However, the mechanical characteristics of
calcium phosphate materials can be varied during the
manufacturing step. As the porosity of the material
decreases, the compressive strength increases; thus,
B-TCP with 60% porosity has a compressive strength
of 22 MPa, which is almost seven times higher than
that for B-TCP with 75% porosity. However, the
resorption rate for the B-TCP with 60% porosity is
lower than that for the B-TCP with 75% porosity [29].

Bioactive glass
Biologically active glasses (BGs) have gained
significant interest in the fields of hard- and soft-
tissue engineering. This is due to their ability to induce
the expression of genes that regulate the processes
of osteo- and angiogenesis, thereby enhancing the
production of the corresponding growth factors [30].
The first type of these biologically active
inorganic materials, known as Bioglass-1 45S5

(BG-1), was discovered by Larry Hench in the late
1960s at the University of Florida. BG-1, with the
composition of 458i0,-24.5Ca0-24.5Na,0-6P,0,
(wt %), binds to living tissues, forming a stable and
densely structured surface; thus, it is effectively used
as a filler in bone fractures [31].

The term, “biological activity,” in the context
of these special glasses indicates the ability of the
bioglass surface to direct the crystallization of
calcium phosphate salts toward the formation of
HAP, thereby facilitating the connection between
the artificial material and body tissues [32]. The
biosilicate mineralization process occurs in several
stages and is shown in Fig. 3. First, the surface of the
bioglass turns into a silica gel with an open structure,
which exchanges ions with biological body fluids
(Stages 1-3, Fig. 3). Subsequently, the calcium and
phosphate ions form an amorphous calcium phosphate
layer (Stage 4, Fig. 3). Afterward, the Ca—P layer
adds hydroxyl and carbonate ions, which facilitate
the crystallization of hydroxycarbonate apatite (Stage 5,
Fig. 3) [33].

Bioglass is categorized based on three different
types of inorganic oxides, including structure-forming
(S8i0,, B,0O,, and P,0,), modifying (Na,O, CaO, MgO,
K,0), and intermediate compounds (ALO,, ZnO, ZrO,,
and TiO,) [34]. According to the principle of the main
structure-forming oxide, bioglasses are divided into
glass families based on silicates, borosilicates, borates,
and phosphates [35]. Additionally, BGs doped with a
small amount of biologically active metal ions have
been developed, and they exhibit various therapeutic
effects (stimulating osteo- and angiogenesis, anti-
inflammatory, and antiseptic) (Table 1) [36]. Mesoporous
BGs obtained by sol-gel processes have the porosity
(2-50 nm) suitable for the immobilization of various
therapeutic agents in nanopores with their subsequent
local release in a controlled manner [37]. Alloyed and
mesoporous BGs are considered as separate classes of
the bioglass family.

In vitro and in vivo studies have shown that such
therapeutic functions of BGs, including improving
the cell growth and proliferation, biomineralization,
stimulation of angiogenesis, anti-inflammatory and
antibacterial activity, are associated with the release of
metal ions and growth factors from the glass structure,
after which the bioglass itself undergoes resorption [36].

The use of biocomposite osteoplastic scaffolds
based on a BG and a polymer matrix provides additional
advantages, such as the launch of biomineralization,
which contributes to the formation of a bond between
the newly formed tissue and the material; improvement
of the initial mechanical properties of the polymer
phase; and the ability to fine tune the rate of material
resorption [30].

Toukue xuMmudeckue TexHosoruu = Fine Chemical Technologies. 2021;16(1):36-54

41



New-generation osteoplastic materials based on biological and synthetic matrices
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Fig. 3. Formation mechanism of hydroxycarbonate apatite on the surface of bioactive glass.

Table 1. Therapeutic effects of doped bioglass based on various biologically active ions

Therapeutic effect

Metal ions

Angiogenesis Mg?, Mn*, Ca*, Cu*', B¥, Si*', P>*
Antibacterial Ag’, Cu*, Zn**, Ga**, Min*, Fe**, Ce**
Osteogenesis F-, Li*, Sr**, Mg, Mn*', Ca?", Cu?*, Ga*', Si*, Nb**

Anti-inflammatory

Li*, Mn*", Zn*", B**

To date, several studies have been published on the
use of BG frameworks [38] and composite carriers of the
polymer/BG composition [39, 40] in the field of bone
tissue engineering. Results of these studies indicate that
PLA/BG scaffolds are suitable candidates for achieving
optimal bonding between material and tissues, the latter
being both soft and hard [41]. Therefore, several studies
are actively underway that suggest the use of these
systems in areas where the device must simultaneously
connect to both soft and hard tissues (for example,
middle ear implants or joint implants) [36].

MATRICES BASED
ON SYNTHETIC POLYMERS

Synthetic biodegradable polymers appear to
be promising materials for use in various tissue-
engineered  structures, mainly of composite
composition [42].

The most used resorbable synthetic polymers
for the manufacture of osteoplastic matrices
are saturated poly (o-hydroxyesters), including
polylactic acid (PLA) and polyglycolic acid (PGA),
as well as polylactic acid glycolide copolymer
(PLGA) [43].

The chemical composition of these polymers
allows for hydrolytic degradation by deesterification.
After resorption, the monomeric components of
each polymer are excreted from the recipient’s
body naturally. PGA is converted to metabolites
or removed via other mechanisms, and PLA can be
purified through the tricarboxylic acid cycle [44].

PGA is a hydrophilic and highly crystalline
polymer with a relatively high degradation rate.
Although PLA is structurally very similar to PGA, it
exhibits different chemical, physical, and mechanical
properties due to the presence of a pendant methyl
group on the a carbon (Fig. 4) [45].
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Fig. 4. Chemical structure of PLGA
and monomers PLA and PGA.

The PLGA copolymer is preferred over its
constituent homopolymers for the manufacture of
bone implants, since the physicochemical properties
of PLGA allow one to control the rate of decomposition
of the material, and PLGA can be obtained in block,
fiber, hydrogel, and nanoparticle forms [44].

The rate of resorption of synthetic polymer
matrices is influenced by the following factors:

1) The molecular weight of the polymer:
degradation rates vary from several weeks to several
months.

2) The LA/GA ratio: PLGA copolymers with a
high LA content are less hydrophilic; consequently,
they absorb a low amount of water and degrade slowly.

3) Stereochemistry: mixtures of D- and L-lactic
acid monomers are often used for the preparation
of PLGA, since the rate of penetration of water
molecules in the D- and L-regions is high, which
leads to accelerated degradation.

4) The structure of end groups: polymers with
ester residues at the ends have longer half-lives than
those with free carboxylic acid [46, 47].

Furthermore, polyethylene glycol (PEG) [48, 49],
polyanhydrides [50], poly-g-caprolactone (PCL) [49, 51],
polypropylene fumarate (PPF) [51], and poloxamers
[52] are considered synthetic polymer carriers. The
advantages of these resorbable polymer carriers are
hydrolytic and enzymatic resorption, zero risk of
bacterial and viral contamination, and the ability to
regulate the mechanical strength by manipulating the
polymer structure [53].

Due to their flexible design and controlled
degradation rate, biodegradable synthetic polymers
in the form of nanoparticles are considered as carriers
for the delivery of recombinant protein osteoinducers
and pharmaceutical substances. A system for delivery
of the growth factor, rhBMP-2, was demonstrated

based on the PLA-PEG copolymer; a carrier in the
form of a viscous liquid or polymer granules was
implanted at the site of surgical correction of bone
pathology [54]. According to the results of the study,
the PLA—PEG complex was recognized as an effective
transport matrix for the prolonged release of the
recombinant osteoinducer, rhBMP-2. The efficacy of
rhBMP-2 in various animal models was shown when
it was immobilized on the matrices of PLA [55], PGA
[56], and their copolymer, PLGA [57].

Even though the low pH of the medium created
by the products of acid cleavage accelerates the
degradation of PLGA due to autocatalysis, this
factor is simultaneously a disadvantage of synthetic
polymers [58]. This acidification of the medium and
the hydrophobic nature of the polymers have anegative
effect on the stability of the protein immobilized on
the surface of the carrier [59] and increase the risk of
inflammatory reactions and delayed clearance [60].

In bone tissue engineering, a combined approach
is used, which consists of the synthesis of block
copolymers to manipulate the characteristics of the
polymer delivery system, e.g., the kinetics of the
release of pharmaceutical compounds immobilized
on an osteoplastic polymer carrier [61, 62].

Synthetic polymer matrices based on PLA and
PGA can be combined in various ratios with calcium
phosphate materials (CaPs) to create composite
materials with or without chemical modifications
of the surface [63]. When CaPs are combined with
polymers to form a composite framework, the rate of
their resorption is reduced in comparison with that of
the pure polymer [64].

Park et al. demonstrated the effectiveness of
using PCL composites with the addition of B-TCP
under mechanical loading conditions, comparable to
the modulus of compression of the human trabecular
bone. The earliest differentiation of MSCs and high
expression of osteogenic markers were noted in PCL/B-TCP
composites with a content of 30% B-TCP [65].

Additionally, a high level of osseointegration
was demonstrated by the PLA composite containing
tricalcium phosphate microspheres with a size of
60-140 pm (PLA/B-TCP). Due to the formation of an
ordered porous structure of the composite material,
PLA/B-TCP, 16 weeks after implantation into the
femur of rabbits, the vascularization of the implant
and growth of newly formed tissue into its pores were
observed [66].

BIOCOMPOSITE FRAMEWORKS

Composite frameworks with mesoporous silicon
From the viewpoint of clinical efficacy,
biocomposite carriers of various pharmaceutical
substances created based on nanotechnologies are the
most promising materials for tissue engineering [67].
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Mesoporous  silicon nanoparticles (MSNs)
accelerate bone formation by increasing the osteoblast
activity and decreasing the bone resorption due to a
decrease in the osteoclast activity [68]. MSN-based
materials can deliver pharmaceutical molecules of
various structures and masses to the injury site due
to their pore size and morphology, as well as the
possibility of modifying the MSN surface [67]. The
variability and flexibility in the design of silicon
nanoparticles allow one to choose the dosage of a
pharmaceutical substance and control the kinetics of
its release in accordance with the functional groups
of the molecule that will be adsorbed on the MSN
surface [69, 70].

Take the delivery of ibuprofen, which has a—-COOH
group in its composition, as an example. There is an
increase in the adsorption of ibuprofen on the surface
of MSN modified with polar molecules as compared
to silicon nanoparticles with nonpolar modifications
[70]. Consequently, prolonged release of the
pharmaceutical substance and a lasting therapeutic
effect are observed [70].

The efficacy of doxorubicin delivery using MSNs
surface-modified with PEG has been demonstrated in
a mouse malignant tumor model [71]. On the 12th
day, the animals were withdrawn from the experiment,
and the comparable growth rates of tumor volumes
were evaluated. The effect of doxorubicin, expressed
as the degree of inhibition of the tumor growth rate,
was 68.7% for the MSN-PEG loaded particles,
compared to 42.5% for pure silicon nanoparticles
[71]. This result is due to the improved stability of the
doxorubicin molecule on the MSN-PEG surface and
the prolonged circulation of the nanoparticles with
the pharmaceutical substance in the blood.

In recent studies, significant attention has
been paid to composite frameworks based on MSN
nanoparticles crosslinked with methacrylate gelatin
as part of hydrogel membranes [72]. A recombinant
osteoinducer, rhBMP-2, is immobilized on the surface
of the mesoporous bioglass through an amide bond. It
was shown in vitro that the release of hBMP-2 from
the matrix during the first 4 weeks of the experiment
significantly stimulated the osteogenic differentiation
of cells, and the resorption of the composite carrier to
calcium and silicon ions promoted cell adhesion and
osteogenic differentiation over a long period [73].
In vivo hydrogel membranes based on mesoporous
bioglass crosslinked with gelatin demonstrated high
rates of bone tissue osteogenesis in a defect in a rat’s
skull of critical size [72, 73].

Composite frameworks with carbon nanotubes
Biodegradable composite scaffolds based on
PLA and PGA polymers in combination with carbon
nanotubes (CNTs) are a promising development for a

wide range of applications in bone tissue engineering,
particularly in cases where the implanted material
mainly handles high loads [74]. This combination of
composites is particularly effective, since it allows
one to achieve self-assembly of CNT fibers and
create a network structure in the polymer matrix, and
it improves the mechanical strength, thermal stability,
and electrical conductivity of the material at low CNT
concentrations [75].

Mikael et al. presented an efficient method for
the preparation of composite frameworks from PLGA
microspheres and multi-walled carbon nanotubes
(MWCNTs) with various surface modifications [76].
Such scaffolds showed high in vitro cell adhesion,
cell proliferation, and mineralization, as well as signs
of a connection with soft tissues.

A similar approach was tested on composite
frameworks with single-walled carbon nanotubes
(SWCNTs). It was shown that the PLGA/SWCNT
combination led to an even higher gene expression
and cell proliferation for the formation of new muscle
tissue, compared with that for the composite carrier
of PLGA and MWCNTs [77]. It is assumed that such
a cellular activity is a consequence of the increased
expression of transmembrane cellular receptors,
integrins, which may be caused by the topographic
features of SWCNTs. This activity is essential for
achieving enhanced interaction of the polymer
framework with biological components [77].

Another quality of CNTs in composite materials
is their ability to change the thermal and electrical
properties of PLA [76, 78]. This approach can be
used to increase the reactivity of stem cells seeded on
the polymer through electrical stimulation, thereby
improving tissue regeneration in the long term [79].

A composite material based on a CNT/sodium
hyaluronate complex demonstrated a high potential for
the restoration of bone tissue defects in rats [80, 81]. This
composite induces the expression of genes involved in
bone tissue regeneration, such as osteocalcin and BMP-2
[80]. An increase in the expression of type I collagen, as
well as the vascular endothelial growth factor, was also
observed. When using the CNT—sodium hyaluronate
composite in tibial defects, histo-morphometric analysis
showed an increase in the number and organization of
bone trabeculae, in comparison with the case in the
control group [81].

However, carbon nanostructures raise serious
concerns when used as components of biomedical
devices due to the lack of data on their carcinogenicity
and the accumulation of decay products in the human
body [78].

Composite frameworks with metal oxides
Composite systems of PLA/metal oxide
composition, including zinc oxide (ZnO), magnesium
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oxide (MgO), and iron oxides (Fe,O, and Fe,0,), have
interesting and promising characteristics suitable for
application in surgical osteology [82, 83]. Each of these
metals has properties suitable for a variety of tissue
engineering applications. Compared to clinically used
PLGA materials, metal oxide composite structures can
reduce inflammation and simultaneously stimulate
osteogenesis and osseointegration [84].

The ZnO in the osteoplastic matrix inhibits bacterial
attachment and stimulates cell differentiation in the
direction of the myocyte phenotype [85]. When the oxide
is integrated into the PLLA/ZnO composite system (ZnO
in the form of ~40 nm nanorods), the composite slowly
releases zinc ions into the environment [86]. Nanorods
act as catalytic nuclei, slightly accelerating the polymer
degradation. This observation is of key importance as it
improves the connection between differentiated myocytes
and the implant [85].

MgO is used in composite materials as an
alternative to BGs to improve biomineralization
and retard PLA degradation [87]. MgO particles
incorporated into the polymer matrix buffer the ambient
pH, thereby reducing the rate of PLA hydrolysis and
weakening the autocatalytic effect of the polymer. The
characteristics of the porous PLA/MgO composite
framework have been studied in the field of dental bone
grafting [88]. The authors reported high compressive
and tensile strength, prolonged material resorption
time, proliferation of bone marrow MSCs in vitro, and
bone tissue regeneration in vivo in a dog model [89].

Fe,O, and Fe,O, have a unique property that can be
used to improve the bond between tissue and biomaterial—
supermagnetism [90]. The use of supermagnetic iron
oxide particles, particularly in the treatment of cancer and
many other drug delivery systems, is a new trend in the
field of regenerative medicine [91, 92].

Studies have investigated the incorporation of
superparamagnetic iron oxide nanoparticles (y-Fe O,
and FeO-Fe 0,) into a PLGA matrix, followed by the
application of a static magnetic field to the composite
structure during cell culture. Magnetic stimulation,
similar to nanoparticles obtained separately, promoted
the differentiation of osteoblasts [93].

The explanation of this phenomenon consists of
two aspects: first, the stimulation by the application
of a static magnetic field due to the diamagnetic
properties of the cell membrane changes the flow
of ions through the membrane; second, iron oxide
nanoparticles reduce the intracellular production of
H,0,, thereby accelerating the progression of the cell
cycle. These two stimuli act synergistically, which
leads to a significant increase in the proliferation,
differentiation, and secretion of MSCs, promoting
the formation of a bond between tissue and material
[90, 91, 93].

COMPOSITE MATRICES
FROM NATURAL POLYMERS

Since the implant used in bone tissue engineering
must, to a certain extent, mimic the characteristics
of cartilage and bone tissue, natural polymers appear
to be an intuitive choice for the initial matrix [94].
Natural polymers can be classified according to their
origin (animal, plant, or microbiological) and chemical
structure (proteins, polysaccharides, polynucleotides)
(Fig. 5) [95].

Porous scaffolds composed of natural polymers
stimulate the osteogenic differentiation of MSCs [94].
However, the strength characteristics and resorbability
of these matrices under the conditions of the recipient’s
organism are insufficient, and these matrices are inferior
to synthetic resorbable polymer matrices [96].

Chitosan-based matrices

Chitosan is a biodegradable natural polymer
obtained by the deacetylation of the natural polymer
of chitin [97]. Chitosan has pronounced bactericidal
properties, and due to its ability to enhance the
absorption of hydrophobic macromolecules, it is
used as a carrier to achieve prolonged local release of
pharmaceutical substances [98].

Composite systems of the chitosan/PGA,
chitosan/HAP, and chitosan/gelatin compositions can
serve as effective osteoplastic carriers [99, 100]. In
in vitro experiments, biological membranes based on
chitosan nanofibrils with the addition of rhBMP-2
demonstrated a high biological activity expressed in
the osteogenic differentiation of MSCs, high alkaline
phosphatase activity, and calcification for 4 weeks
with 50% preservation of the immobilized rhBMP-2
on the membrane [101].

Due to their mucoadhesive cationic nature,
chitosan nanoparticles (NPCS) are used to reduce the
toxic effect and increase the activity of drugs, since
they allow the therapeutic agent to be delivered to the
immediate vicinity of the injury site [102]. NPCS are
usually modified to increase their effectiveness. For
example, 2N-,60-sulfated chitosan (2,6SCS) forms a
polysaccharide similar in structure to heparin, which
can successfully bind to the rhBMP-2 domain region
(Fig. 6A). Modified NPCS retard the release of the
growth factor and increase its biological activity
[103, 104].

Gelatin-based matrices

Gelatin is a hydrolyzed form of collagen
obtained by heat treatment. The use of gelatin as
the only material in the composition of a carrier
for pharmaceutical substances is complicated
because it tends to undergo rapid biodegradation
in the recipient’s body [105]. The prolongation of
the biodegradation time is achieved by chemical
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“crosslinking” of collagen fibers with glutaraldehyde;
however, a cytotoxic effect is noted, indicated by the
retardation of the osteogenic differentiation of MSCs
in in vitro studies [106]. A decrease in toxicity can
be achieved after 4 days of washing the crosslinked
matrix from glutaraldehyde [107].

A biocomposite material based on gelatin and
B-TCP demonstrated improved biodegradability
under the influence of collagenase with a large
amount of gelatin and high osteoinduction, expressed
as an increase in the level of alkaline phosphatase
activity in vitro [108].

The photochemical process involving tris-(2,2'-
bipyridine) chloride of ruthenium(II) [Ru(bpy),]Cl,
and persulfate ion allows the covalent crosslinking of
tyrosine-rich proteins (rubber, gelatin, and fibrinogen)
because of the formation of dityrosine bonds
and to obtain biopolymer materials with variable
biomechanical and tissue-adhesive properties pre-
set at the stage of material creation [109, 110]. The
tendency of tyrosine-rich proteins to self-organize
polymer fibers and interact with extracellular matrix
proteins enables the application of the biopolymers
crosslinked via this route as surgical sealants or drug
delivery systems [111, 112].

The thus obtained photopolymerizable gelatin
hydrogel (PH) possesses the porosity required to
load it with modified NPCS [103, 113]. The direct
introduction of growth factors into the PH does not
have a significant effect, since the hydrogel swells
and decomposes rapidly, and the complete release of
rhBMP-2 is observed after 7 days (Fig. 6B) [103].
However, the composite PH system including 2,6SCS
nanoparticles (PH/rhBMP-2/NPs) shows the best
results for the stepwise release of therapeutic agents.
The first intense thBMP-2 release is recorded within
the first 2 weeks after implantation, and it is associated
with the swelling of the hydrogel. Thereafter, there
is a gradual release over 42 days, due to the slow
degradation of the PH (Fig. 6C) [103].

Collagen osteoplastic matrices

Collagenisthe mostabundant protein in the human
body and a non-mineral biological component of the
skeleton. It can be easily isolated and enzymatically
purified from various types of xenogeneic matrices
for use as a supporting scaffold for cell proliferation
in bone tissue engineering [114, 115].

Collagen osteoplastic scaffolds are manufactured
in the form of powder, membrane films, aqueous
forms, gels, nanofibers, and absorbent sponges [116].

(  Cellulose

Plant

Alginate
Starch

]_

Natural polymers
based on their
origin

\_ Soy

Gelatin
Chitosan
Hyaluronate

Microbes

Hyaluronate
Dextran

Cellulose

Polysaccharides

Dextran

~ Chitosan
yaluronate

Natural polymers

Polypeptides

Collagen
Gelatin
Lecitin

based on their

structure

Polynucleotides

DNA
RNA

~

Polyesters

Polyhydroxy-
alkanoates

J

Fig. 5. Classification of natural polymers based on their origin and chemical structure.

Tonkie Khimicheskie Tekhnologii = Fine Chemical Technologies. 2021;16(1):36-54

46



Dmitry D. Lykoshin, Vladimir V. Zaitsev, Maria A. Kostromina, Roman S. Esipov

Macromolecular chain of gelatin

e~

O rhBMP-2
©

Vad 2,65CS

A rhBMP-2/NPs

Degrading O
@ ©
rhBMP-2/PH
Swelling -
_>
rhBMP-2/NPs
Swelling
.

O O/ Degrading

2,6SCS layer

Degrading

Fig. 6. Illustration of the mechanisms of rhBMP-2 release from (A) sulfated chitosan nanoparticles (NPCS),
(B) photopolymerizable gelatin hydrogel, and (C) a complex of a hydrogel with NPCS.

The versatility, hygroscopicity, and ease of use of
collagen sponges have led to their widespread clinical
use for the localization and delivery of targeted
pharmaceutical substances [117, 118]. Since 2002,
the United States Food and Drug Administration has
approved the commercial preparation of INFUSE
with recombinant hBMP-2 on an ACS collagen plate
at a concentration of 1.5 mg/mL [119].

In surgical osteology, INFUSE is used as an
alternative to the autologous iliac crest for the single-
level fusion of the vertebral bodies in the lumbar spine
and to accelerate the fusion of open tibial fractures with
intramedullary fixation [119]. Additionally, INFUSE
is widely used as an alternative to autologous bone
implants for the limited enlargement of the alveolar
sinus and treatment of defects associated with bone
loss in dentistry [120, 121].

Despite its high biocompatibility, collagen has
several disadvantages. It is mechanically unstable,
and therefore, upon implantation into an environment,
where the sponge is compressed by the surrounding
muscles and tissues, there is a local excess release
of osteoinductive proteins immobilized on the carrier
[114]. Collagen resorption is unpredictable and
difficult to control, which also leads to undefined
kinetics of recombinant growth factor release. /n vivo,

it was shown that after 2 weeks, only 5% of rhBMP-2
remains in the collagen sponge [122].

An increase in the collagen resorption duration
can be achieved by crosslinking collagen molecular
chains with chemical agents, such as glutaraldehyde,
carbodiimide, and genipin, or by physical exposure,
such as UV radiation or dehydrothermal treatment.
However, due to cytotoxicity, chemical crosslinking
agents adversely affect the biocompatibility and
regenerative potential of the material [116, 123].

Additionally, collagen extracted from the
xenogeneic matrix with insufficient and ineffective
chemical cleaning demonstrates pronounced immuno-
genicity; in 20% of patients who received an implant
from a collagen sponge, antibodies to type I collagen
were found [114, 124].

Another disadvantage of using collagen scaffolds is
the difficulty of sterilizing them, since heat sterilization
causes the partial or complete, irreversible denaturation
of collagen fibers [125, 126]. Thus, gas sterilization
with ethylene oxide is used to sterilize collagen
sponges [127]. However, with this method of sterilizing
a collagen sponge with thBMP-2 immobilized on it,
an unpredictable change in the kinetics of the growth
factor release and a decrease in its biological activity
were noted [128, 129].
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CONCLUSIONS

Despite all the advantages of an autologous bone,
in the presence of cellular elements of the bone marrow,
presence of growth factors, and local blood supply,
synthetic and biocomposite osteoplastic matrices
can be a real alternative to an autologous bone graft,
particularly in the variants of transport systems for
the prolonged local release of target pharmaceutical
substances.

Although positive scientific and practical results
have been achieved in the study of new-generation
osteoplastic matrices, many unresolved issues remain,
and the main ones are as follows:

— Optimization of the resorption time of the
osteoplastic matrix.

— Selection of an effective technology to facilitate
the resorption of the osteoplastic matrix, synchronized
in time with the process of bone regeneration.

— Stabilization of the matrix to exclude a
pronounced macrophage reaction of the recipient’s
body.

— Solving issues related to the certification and
registration of new options for osteoplastic surgical
implants in supervisory medical organizations.
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